676 research outputs found
Solving One Dimensional Scalar Conservation Laws by Particle Management
We present a meshfree numerical solver for scalar conservation laws in one
space dimension. Points representing the solution are moved according to their
characteristic velocities. Particle interaction is resolved by purely local
particle management. Since no global remeshing is required, shocks stay sharp
and propagate at the correct speed, while rarefaction waves are created where
appropriate. The method is TVD, entropy decreasing, exactly conservative, and
has no numerical dissipation. Difficulties involving transonic points do not
occur, however inflection points of the flux function pose a slight challenge,
which can be overcome by a special treatment. Away from shocks the method is
second order accurate, while shocks are resolved with first order accuracy. A
postprocessing step can recover the second order accuracy. The method is
compared to CLAWPACK in test cases and is found to yield an increase in
accuracy for comparable resolutions.Comment: 15 pages, 6 figures. Submitted to proceedings of the Fourth
International Workshop Meshfree Methods for Partial Differential Equation
High Order Upwind Schemes for Multidimensional Magnetohydrodynamics
A general method for constructing high order upwind schemes for
multidimensional magnetohydrodynamics (MHD), having as a main built-in
condition the divergence-free constraint \divb=0 for the magnetic field
vector \bb, is proposed. The suggested procedure is based on {\em
consistency} arguments, by taking into account the specific operator structure
of MHD equations with respect to the reference Euler equations of gas-dynamics.
This approach leads in a natural way to a staggered representation of the \bb
field numerical data where the divergence-free condition in the cell-averaged
form, corresponding to second order accurate numerical derivatives, is exactly
fulfilled. To extend this property to higher order schemes, we then give
general prescriptions to satisfy a order accurate \divb=0
relation for any numerical \bb field having a order interpolation
accuracy. Consistency arguments lead also to a proper formulation of the upwind
procedures needed to integrate the induction equations, assuring the exact
conservation in time of the divergence-free condition and the related
continuity properties for the \bb vector components. As an application, a
third order code to simulate multidimensional MHD flows of astrophysical
interest is developed using ENO-based reconstruction algorithms. Several test
problems to illustrate and validate the proposed approach are finally
presented.Comment: 34 pages, including 14 figure
Dispersive wave runup on non-uniform shores
Historically the finite volume methods have been developed for the numerical
integration of conservation laws. In this study we present some recent results
on the application of such schemes to dispersive PDEs. Namely, we solve
numerically a representative of Boussinesq type equations in view of important
applications to the coastal hydrodynamics. Numerical results of the runup of a
moderate wave onto a non-uniform beach are presented along with great lines of
the employed numerical method (see D. Dutykh et al. (2011) for more details).Comment: 8 pages, 6 figures, 18 references. This preprint is submitted to
FVCA6 conference proceedings. Other author papers can be downloaded at
http://www.lama.univ-savoie.fr/~dutykh
A rarefaction-tracking method for hyperbolic conservation laws
We present a numerical method for scalar conservation laws in one space
dimension. The solution is approximated by local similarity solutions. While
many commonly used approaches are based on shocks, the presented method uses
rarefaction and compression waves. The solution is represented by particles
that carry function values and move according to the method of characteristics.
Between two neighboring particles, an interpolation is defined by an analytical
similarity solution of the conservation law. An interaction of particles
represents a collision of characteristics. The resulting shock is resolved by
merging particles so that the total area under the function is conserved. The
method is variation diminishing, nevertheless, it has no numerical dissipation
away from shocks. Although shocks are not explicitly tracked, they can be
located accurately. We present numerical examples, and outline specific
applications and extensions of the approach.Comment: 21 pages, 7 figures. Similarity 2008 conference proceeding
Observations of Aerosol-Radiation-Cloud Interactions in the South-East Atlantic: First Results from the ORACLES Deployments in 2016 and 2017
Southern Africa produces almost a third of the Earths biomass burning (BB) aerosol particles. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical stratocumulus (Sc) cloud decks in the world. The SE Atlantic stratocumulus deck interacts with the dense layers of BB aerosols that initially overlay the cloud deck, but later subside and often mix into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects, and their global representation in climate models remains one of the largest uncertainties in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for regional and global climate change predictions.The low-level clouds in the SE Atlantic have limited vertical extent and therefore present favorable conditions for their exploration with remote sensing. On the other hand, the normal coexistence of BB aerosols and Sc clouds in the same scene also presents significant challenges to conventional remote sensing techniques. We describe first results from NASAs airborne ORACLES (ObseRvations of Aerosols Above Clouds and Their IntEractionS) deployments in September 2016 and August 2017. We emphasize the unique role of polarimetric observations by two instruments, the Research Scanning Polarimeter (RSP) and the Airborne Multi-angle SpectroPolarimeter Imager (AirMSPI), and describe how these instruments help address specific ORACLES science objectives. Initial assessments of polarimetric observation accuracy for key cloud and aerosol properties will be presented, in as far as the preliminary nature of measurements permits
An Euler Solver Based on Locally Adaptive Discrete Velocities
A new discrete-velocity model is presented to solve the three-dimensional
Euler equations. The velocities in the model are of an adaptive nature---both
the origin of the discrete-velocity space and the magnitudes of the
discrete-velocities are dependent on the local flow--- and are used in a finite
volume context. The numerical implementation of the model follows the
near-equilibrium flow method of Nadiga and Pullin [1] and results in a scheme
which is second order in space (in the smooth regions and between first and
second order at discontinuities) and second order in time. (The
three-dimensional code is included.) For one choice of the scaling between the
magnitude of the discrete-velocities and the local internal energy of the flow,
the method reduces to a flux-splitting scheme based on characteristics. As a
preliminary exercise, the result of the Sod shock-tube simulation is compared
to the exact solution.Comment: 17 pages including 2 figures and CMFortran code listing. All in one
postscript file (adv.ps) compressed and uuencoded (adv.uu). Name mail file
`adv.uu'. Edit so that `#!/bin/csh -f' is the first line of adv.uu On a unix
machine say `csh adv.uu'. On a non-unix machine: uudecode adv.uu; uncompress
adv.tar.Z; tar -xvf adv.ta
A characteristic particle method for traffic flow simulations on highway networks
A characteristic particle method for the simulation of first order
macroscopic traffic models on road networks is presented. The approach is based
on the method "particleclaw", which solves scalar one dimensional hyperbolic
conservations laws exactly, except for a small error right around shocks. The
method is generalized to nonlinear network flows, where particle approximations
on the edges are suitably coupled together at the network nodes. It is
demonstrated in numerical examples that the resulting particle method can
approximate traffic jams accurately, while only devoting a few degrees of
freedom to each edge of the network.Comment: 15 pages, 5 figures. Accepted to the proceedings of the Sixth
International Workshop Meshfree Methods for PDE 201
Study protocol: an evaluation of the effectiveness, experiences and costs of a patient-directed strategy compared with a multi-faceted strategy to implement physical cancer rehabilitation programmes for cancer survivors in a European healthcare system; a controlled before and after study
Background
The need for physical cancer rehabilitation programmes (PCRPs), addressing adverse effects from cancer, is growing. Implementing these programmes into daily practice is still a challenge.
Since barriers for successful implementation often arise at different levels in healthcare, multi-faceted strategies focusing on multiple levels are likely more effective than single-faceted strategies. Nevertheless, most studies implementing PCRPs used strategies directed at patients only. The aim of this study is to develop and identify the most effective strategy to implement PCRPs into daily care. We want to assess the added value of a multi-faceted strategy compared with a single-faceted patient-directed strategy.
Methods/design
We will conduct a clustered controlled before and after study (CBA) in the Netherlands that compares two strategies to implement PCRPs. The patient-directed (PD) strategy (five hospitals) will focus on change at the patient level. The multi-faceted (MF) strategy (five hospitals) will focus on change at the patient, professional and organizational levels. Eligibility criteria are as follows: (A) patients: adults; preferably (history of) cancer in the gastro-intestinal, reproductive and/or urological system; successful primary treatment; and without recurrence/metastases. (B) Healthcare professionals: involved in cancer care.
A stepwise approach will be followed:
Step 1: Analysis of the current implementation of PCRPs and the examination of barriers and facilitators for implementation, via a qualitative study with patients (four focus groups n = 10–12) and their healthcare workers (four focus groups n = 10–12 and individual interviews n = 30–40) and collecting data on adherence to quality indicators (n = 500 patients, 50 per hospital).
Step 2: Selection and development of interventions to create a PD and MF strategy during expert roundtable discussions, using the knowledge gained in step 1 and a literature search of the effect of strategies for implementing PCRPs.
Step 3: Test and compare both strategies with a clustered CBA (effectiveness, process evaluation and costs), by data extraction from existing registration systems, questionnaires and interviews. For the effectiveness and cost-effectiveness, n = 500 patients, 50 per hospital. For the process evaluation, n = 50 patients, 5 per hospital, and n = 40 healthcare professionals, 4 per hospital. Main outcome measures: % screened patients, % referrals to PCRPs, incremental costs and incremental cost-effectiveness ratios (ICERs)
Aspects of Subcortical Ischaemic Vascular Disease:Early clinical manifestations and associations with Type 2 diabetes mellitus
- …
