13,073 research outputs found

    Isochronal synchronization of delay-coupled systems

    Full text link
    We consider small network models for mutually delay-coupled systems which typically do not exhibit stable isochronally synchronized solutions. We show that for certain coupling architectures which involve delayed self feedback to the nodes, the oscillators become isochronally synchronized. Applications are shown for both incoherent pump coupled lasers and spatio-temporal coupled fiber ring lasers.Comment: 5 pages, accepted for publication in Physical Review

    Microscale application of column theory for high resolution force and displacement sensing

    Full text link
    We present the design, fabrication and experimental validation of a novel device that exploits the amplification of displacement and attenuation of structural stiffness in the post-buckling deformation of slender columns to obtain pico-Newton force and nanometer displacement resolution even under an optical microscope. The extremely small size, purely mechanical sensing scheme and vacuum compatibility of the instrument makes it compatible with existing visualization tools of nanotechnology. The instrument has a wide variety of potential applications ranging from electro-mechanical characterization of one dimensional solids to single biological cells

    Dissociating Allopregnanolone Mnemonic Effects from Sedation

    Get PDF
    Allopregnanolone (Allop) is a neurosteroid metabolite of progesterone. Allop modulates cognition, specifically learning and memory, but these effects are frequently confounded by its anxiolytic and sedative properties. We attempted to dissociate the anxiolytic effects of Allop from its mnemonic effects by employing a pharmacological challenge with d- amphetamine. Because previous research suggests that the effects of Allop may vary with the cognitive domain being tested, we assessed both spatial and non-spatial memory. Spatial memory was tested in a Morris Water Maze, and non-spatial object memory was tested on a novel discrimination task. Allop, alone or in combination with d-amphetamine did not have any significant effects on spatial memory. Neither Allop nor amphetamine alone affected memory of a novel object relative to controls, but the combination of the two produced a dissociation and enhanced performance. The results suggest that, depending on the type of memory being tested, the sedative effects of Allop can be dissociated from mnemonic effects by co-administering a sub-threshold dose of d-amphetamine

    On the Rotation Period of (90377) Sedna

    Full text link
    We present precise, ~1%, r-band relative photometry of the unusual solar system object (90377) Sedna. Our data consist of 143 data points taken over eight nights in October 2004 and January 2005. The RMS variability over the longest contiguous stretch of five nights of data spanning nine days is only 1.3%. This subset of data alone constrain the amplitude of any long-period variations with period P to be A<1% (P/20 days)^2. Over the course of any given 5-hour segment, the data exhibits significant linear trends not seen in a comparison star of similar magnitude, and in a few cases these segments show clear evidence for curvature at the level of a few millimagnitudes per hour^2. These properties imply that the rotation period of Sedna is O(10 hours), cannot be 10 days, unless the intrinsic light curve has significant and comparable power on multiple timescales, which is unlikely. A sinusoidal fit yields a period of P=(10.273 +/- 0.002) hours and semi-amplitude of A=(1.1 +/- 0.1)%. There are additional acceptable fits with flanking periods separated by ~3 minutes, as well as another class of fits with P ~ 18 hours, although these later fits appear less viable based on visual inspection. Our results indicate that the period of Sedna is likely consistent with typical rotation periods of solar system objects, thus obviating the need for a massive companion to slow its rotation.Comment: 7 pages, 4 figures, 2.5 tables. Final ApJL version, minor changes. Full light curve data in tex

    A Nearly Polar Orbit for the Extrasolar Hot Jupiter WASP-79b

    Get PDF
    We report the measurement of a spin-orbit misalignment for WASP-79b, a recently discovered, bloated transiting hot Jupiter from the WASP survey. Data were obtained using the CYCLOPS2 optical-fiber bundle and its simultaneous calibration system feeding the UCLES spectrograph on the Anglo-Australian Telescope. We have used the Rossiter-McLaughlin effect to determine the sky-projected spin-orbit angle to be lambda = -106+19-13 degrees. This result indicates a significant misalignment between the spin axis of the host star and the orbital plane of the planet -- the planet being in a nearly polar orbit. WASP-79 is consistent with other stars that have Teff > 6250K and host hot Jupiters in spin-orbit misalignment.Comment: 8 pages, 2 figures, in press ApJL (accepted 2 August 2013

    Deep MMT Transit Survey of the Open Cluster M37 IV: Limit on the Fraction of Stars With Planets as Small as 0.3 R_J

    Full text link
    We present the results of a deep (15 ~< r ~< 23), 20 night survey for transiting planets in the intermediate age open cluster M37 (NGC 2099) using the Megacam wide-field mosaic CCD camera on the 6.5m MMT. We do not detect any transiting planets among the ~1450 observed cluster members. We do, however, identify a ~ 1 R_J candidate planet transiting a ~ 0.8 Msun Galactic field star with a period of 0.77 days. The source is faint (V = 19.85 mag) and has an expected velocity semi-amplitude of K ~ 220 m/s (M/M_J). We conduct Monte Carlo transit injection and recovery simulations to calculate the 95% confidence upper limit on the fraction of cluster members and field stars with planets as a function of planetary radius and orbital period. Assuming a uniform logarithmic distribution in orbital period, we find that < 1.1%, < 2.7% and < 8.3% of cluster members have 1.0 R_J planets within Extremely Hot Jupiter (EHJ, 0.4 < T < 1.0 day), Very Hot Jupiter (VHJ, 1.0 < T < 3.0 days) and Hot Jupiter (HJ, 3.0 < T < 5.0 days) period ranges respectively. For 0.5 R_J planets the limits are < 3.2%, and < 21% for EHJ and VHJ period ranges, while for 0.35 R_J planets we can only place an upper limit of < 25% on the EHJ period range. For a sample of 7814 Galactic field stars, consisting primarily of FGKM dwarfs, we place 95% upper limits of < 0.3%, < 0.8% and < 2.7% on the fraction of stars with 1.0 R_J EHJ, VHJ and HJ assuming the candidate planet is not genuine. If the candidate is genuine, the frequency of ~ 1.0 R_J planets in the EHJ period range is 0.002% < f_EHJ < 0.5% with 95% confidence. We place limits of < 1.4%, < 8.8% and < 47% for 0.5 R_J planets, and a limit of < 16% on 0.3 R_J planets in the EHJ period range. This is the first transit survey to place limits on the fraction of stars with planets as small as Neptune.Comment: 61 pages, 19 figures, 5 tables, replaced with the version accepted for publication in Ap

    Sensitivity of a high‐elevation rocky mountain watershed to altered climate and CO2

    Get PDF
    We explored the hydrologic and ecological responses of a headwater mountain catchment, Loch Vale watershed, to climate change and doubling of atmospheric CO2 scenarios using the Regional Hydro‐Ecological Simulation System (RHESSys). A slight (2°C) cooling, comparable to conditions observed over the past 40 years, led to greater snowpack and slightly less runoff, evaporation, transpiration, and plant productivity. An increase of 2°C yielded the opposite response, but model output for an increase of 4°C showed dramatic changes in timing of hydrologic responses. The snowpack was reduced by 50%, and runoff and soil water increased and occurred 4–5 weeks earlier with 4°C warming. Alpine tundra photosynthetic rates responded more to warmer and wetter conditions than subalpine forest, but subalpine forest showed a greater response to doubling of atmospheric CO2 than tundra. Even though water use efficiency increased with the double CO2 scenario, this had little effect on basin‐wide runoff because the catchment is largely unvegetated. Changes in winter and spring climate conditions were more important to hydrologic and vegetation dynamics than changes that occurred during summer

    Evidence against anomalous compositions for giants in the Galactic Nuclear Star Cluster

    Get PDF
    Very strong Sc I lines have been found recently in cool M giants in the Nuclear Star Cluster in the Galactic Center. Interpreting these as anomalously high scandium abundances in the Galactic Center would imply a unique enhancement signature and chemical evolution history for nuclear star clusters, and a potential test for models of chemical enrichment in these objects. We present high resolution K-band spectra (NIRSPEC/Keck II) of cool M giants situated in the solar neighborhood and compare them with spectra of M giants in the Nuclear Star Cluster. We clearly identify strong Sc I lines in our solar neighborhood sample as well as in the Nuclear Star Cluster sample. The strong Sc I lines in M giants are therefore not unique to stars in the Nuclear Star Cluster and we argue that the strong lines are a property of the line formation process that currently escapes accurate theoretical modeling. We further conclude that for giant stars with effective temperatures below approximately 3800 K these Sc I lines should not be used for deriving the scandium abundances in any astrophysical environment until we better understand how these lines are formed. We also discuss the lines of vanadium, titanium, and yttrium identified in the spectra, which demonstrate a similar striking increase in strength below 3500 K effective temperature.Comment: 11 pages, 6 figures, accepted for publication in Ap

    Optimal Dividend Payments for the Piecewise-Deterministic Poisson Risk Model

    Full text link
    This paper considers the optimal dividend payment problem in piecewise-deterministic compound Poisson risk models. The objective is to maximize the expected discounted dividend payout up to the time of ruin. We provide a comparative study in this general framework of both restricted and unrestricted payment schemes, which were only previously treated separately in certain special cases of risk models in the literature. In the case of restricted payment scheme, the value function is shown to be a classical solution of the corresponding HJB equation, which in turn leads to an optimal restricted payment policy known as the threshold strategy. In the case of unrestricted payment scheme, by solving the associated integro-differential quasi-variational inequality, we obtain the value function as well as an optimal unrestricted dividend payment scheme known as the barrier strategy. When claim sizes are exponentially distributed, we provide easily verifiable conditions under which the threshold and barrier strategies are optimal restricted and unrestricted dividend payment policies, respectively. The main results are illustrated with several examples, including a new example concerning regressive growth rates.Comment: Key Words: Piecewise-deterministic compound Poisson model, optimal stochastic control, HJB equation, quasi-variational inequality, threshold strategy, barrier strateg
    corecore