156 research outputs found

    Evaluation of CT vascularization patterns for survival prognosis in patients with hepatocellular carcinoma treated by conventional TACE

    Get PDF
    PURPOSE:Transarterial chemoembolization (TACE) is an established treatment for intermediate stage hepatocellular carcinoma (HCC). The aim of this retrospective study was to evaluate the power of lesion vascularization criteria based on computed tomography for prognosis of overall survival before initiation of treatment.METHODS:A total of 59 patients with intermediate stage HCC treated with TACE as first-line treatment were retrospectively evaluated. TACE procedures were performed using doxorubicin, cisplatin, and lipiodol. Response evaluation criteria in solid tumors version 1.1 (RECIST 1.1) were used to determine the initial tumor response. Four vascularization patterns (VP) of the largest target lesion (homogeneous vascularization [VP1], homogeneous vascularization with additional arterial hypervascularization [VP2], heterogeneous vascularization with [VP3] and without zones of hypervascularization [VP4]) were assessed prior to the first TACE and correlated to survival.RESULTS:Kaplan-Meier analysis yielded a median overall survival of 608 days (standard error [SE], 120.5 days). Survival analysis showed significant differences depending on the vascularization patterns (P = 0.012; hazard ratio, 0.327): patients with homogeneously vascularized lesions (VP1, VP2) had a median overall survival of 1091 days (SE, 235.5 days). Patients with heterogeneous vascularization of the lesion (VP3 and VP4) showed a median overall survival of 508 days (SE, 113.9 days).CONCLUSION:The vascularization pattern of the largest HCC lesion is helpful for survival prognosis under TACE treatment and therefore has the potential to be used as an additional parameter for treatment stratification

    Lack of genotype-phenotype correlation in Brugada Syndrome and Sudden Arrhythmic Death Syndrome families with reported pathogenic SCN1B variants.

    Get PDF
    BACKGROUND: There is limited evidence that Brugada Syndrome (BrS) is due to SCN1B variants (BrS5). This gene may be inappropriately included in routine genetic testing panels for BrS or Sudden Arrhythmic Death Syndrome (SADS). OBJECTIVE: We sought to characterize the genotype-phenotype correlation in families who had BrS and SADS with reportedly pathogenic SCN1B variants and to review their pathogenicity. METHODS: Families with BrS and SADS were assessed from 6 inherited arrhythmia centers worldwide, and a comprehensive literature review was performed. Clinical characteristics including relevant history, electrocardiographic parameters and drug provocation testing results were studied. SCN1B genetic testing results were reclassified using American College of Medical Genetics criteria. RESULTS: A total of 23 SCN1B genotype-positive individuals were identified from 8 families. Four probands (17%) experienced ventricular fibrillation or sudden cardiac death at the time of presentation. All family members were free from syncope or ventricular arrhythmias. Only 2 of 23 genotype-positive individuals (9%) demonstrated a spontaneous BrS electrocardiographic pattern. Drug challenge testing for BrS in 87% (13 of 15) was negative. There was no difference in PR interval (161 ± 7 ms vs 165 ± 9 ms; P = .83), QRS duration (101 ± 6 ms vs 89 ± 5 ms; P = .35), or corrected QT interval (414 ± 35 ms vs 405 ± 8 ms; P = .7) between genotype-positive and genotype-negative family members. The overall frequency of previously implicated SCN1B variants in the Genome Aggregation Database browser is 0.004%, exceeding the estimated prevalence of BrS owing to SCN1B (0.0005%), including 15 of 23 individuals (65%) who had the p.Trp179X variant. CONCLUSION: The lack of genotype-phenotype concordance among families, combined with the high frequency of previously reported mutations in the Genome Aggregation Database browser, suggests that SCN1B is not a monogenic cause of BrS or SADS

    Toll-8/Tollo Negatively Regulates Antimicrobial Response in the Drosophila Respiratory Epithelium

    Get PDF
    Barrier epithelia that are persistently exposed to microbes have evolved potent immune tools to eliminate such pathogens. If mechanisms that control Drosophila systemic responses are well-characterized, the epithelial immune responses remain poorly understood. Here, we performed a genetic dissection of the cascades activated during the immune response of the Drosophila airway epithelium i.e. trachea. We present evidence that bacteria induced-antimicrobial peptide (AMP) production in the trachea is controlled by two signalling cascades. AMP gene transcription is activated by the inducible IMD pathway that acts non-cell autonomously in trachea. This IMD-dependent AMP activation is antagonized by a constitutively active signalling module involving the receptor Toll-8/Tollo, the ligand Spätzle2/DNT1 and Ect-4, the Drosophila ortholog of the human Sterile alpha and HEAT/ARMadillo motif (SARM). Our data show that, in addition to Toll-1 whose function is essential during the systemic immune response, Drosophila relies on another Toll family member to control the immune response in the respiratory epithelium

    A Quantitative RNAi Screen for JNK Modifiers Identifies Pvr as a Novel Regulator of Drosophila Immune Signaling

    Get PDF
    Drosophila melanogaster responds to gram-negative bacterial challenges through the IMD pathway, a signal transduction cassette that is driven by the coordinated activities of JNK, NF-κB and caspase modules. While many modifiers of NF-κB activity were identified in cell culture and in vivo assays, the regulatory apparatus that determines JNK inputs into the IMD pathway is relatively unexplored. In this manuscript, we present the first quantitative screen of the entire genome of Drosophila for novel regulators of JNK activity in the IMD pathway. We identified a large number of gene products that negatively or positively impact on JNK activation in the IMD pathway. In particular, we identified the Pvr receptor tyrosine kinase as a potent inhibitor of JNK activation. In a series of in vivo and cell culture assays, we demonstrated that activation of the IMD pathway drives JNK-dependent expression of the Pvr ligands, Pvf2 and Pvf3, which in turn act through the Pvr/ERK MAP kinase pathway to attenuate the JNK and NF-κB arms of the IMD pathway. Our data illuminate a poorly understood arm of a critical and evolutionarily conserved innate immune response. Furthermore, given the pleiotropic involvement of JNK in eukaryotic cell biology, we believe that many of the novel regulators identified in this screen are of interest beyond immune signaling

    Rudra Interrupts Receptor Signaling Complexes to Negatively Regulate the IMD Pathway

    Get PDF
    Insects rely primarily on innate immune responses to fight pathogens. In Drosophila, antimicrobial peptides are key contributors to host defense. Antimicrobial peptide gene expression is regulated by the IMD and Toll pathways. Bacterial peptidoglycans trigger these pathways, through recognition by peptidoglycan recognition proteins (PGRPs). DAP-type peptidoglycan triggers the IMD pathway via PGRP-LC and PGRP-LE, while lysine-type peptidoglycan is an agonist for the Toll pathway through PGRP-SA and PGRP-SD. Recent work has shown that the intensity and duration of the immune responses initiating with these receptors is tightly regulated at multiple levels, by a series of negative regulators. Through two-hybrid screening with PGRP-LC, we identified Rudra, a new regulator of the IMD pathway, and demonstrate that it is a critical feedback inhibitor of peptidoglycan receptor signaling. Following stimulation of the IMD pathway, rudra expression was rapidly induced. In cells, RNAi targeting of rudra caused a marked up-regulation of antimicrobial peptide gene expression. rudra mutant flies also hyper-activated antimicrobial peptide genes and were more resistant to infection with the insect pathogen Erwinia carotovora carotovora. Molecularly, Rudra was found to bind and interfere with both PGRP-LC and PGRP-LE, disrupting their signaling complex. These results show that Rudra is a critical component in a negative feedback loop, whereby immune-induced gene expression rapidly produces a potent inhibitor that binds and inhibits pattern recognition receptors

    Adult Drosophila melanogaster evolved for antibacterial defense invest in infection-induced expression of both humoral and cellular immunity genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While the transcription of innate immunity genes in response to bacterial infection has been well-characterised in the Drosophila model, we recently demonstrated the capacity for such transcription to evolve in flies selected for improved antibacterial defense. Here we use this experimental system to examine how insects invest in constitutive versus infection-induced transcription of immunity genes. These two strategies carry with them different consequences with respect to energetic and pleiotropic costs and may be more or less effective in improving defense depending on whether the genes contribute to humoral or cellular aspects of immunity.</p> <p>Findings</p> <p>Contrary to expectation we show that selection preferentially increased the infection-induced expression of both cellular and humoral immunity genes. Given their functional roles, infection induced increases in expression were expected for the humoral genes, while increases in constitutive expression were expected for the cellular genes. We also report a restricted ability to improve transcription of immunity genes that is on the order of 2-3 fold regardless of total transcription level of the gene.</p> <p>Conclusions</p> <p>The evolved increases in infection-induced expression of the cellular genes may result from specific cross talk with humoral pathways or from generalised strategies for enhancing immunity gene transcription. A failure to see improvements in constitutive expression of the cellular genes suggests either that increases might come at too great a cost or that patterns of expression in adults are decoupled from the larval phase where increases would be most effective. The similarity in fold change increase across all immunity genes may suggest a shared mechanism for the evolution of increased transcription in small, discrete units such as duplication of <it>cis</it>-regulatory elements.</p

    The Brain-Specific Beta4 Subunit Downregulates BK Channel Cell Surface Expression

    Get PDF
    The large-conductance K+ channel (BK channel) can control neural excitability, and enhanced channel currents facilitate high firing rates in cortical neurons. The brain-specific auxiliary subunit β4 alters channel Ca++- and voltage-sensitivity, and β4 knock-out animals exhibit spontaneous seizures. Here we investigate β4's effect on BK channel trafficking to the plasma membrane. Using a novel genetic tag to track the cellular location of the pore-forming BKα subunit in living cells, we find that β4 expression profoundly reduces surface localization of BK channels via a C-terminal ER retention sequence. In hippocampal CA3 neurons from C57BL/6 mice with endogenously high β4 expression, whole-cell BK channel currents display none of the characteristic properties of BKα+β4 channels observed in heterologous cells. Finally, β4 knock-out animals exhibit a 2.5-fold increase in whole-cell BK channel current, indicating that β4 also regulates current magnitude in vivo. Thus, we propose that a major function of the brain-specific β4 subunit in CA3 neurons is control of surface trafficking

    Differentially expressed profiles in the larval testes of Wolbachia infected and uninfected Drosophila

    Get PDF
    BACKGROUND: Wolbachia are endosymbiotic bacteria that are frequently found in arthropods and nematodes. These maternally inherited bacteria manipulate host reproduction by several mechanisms including cytoplasmic incompatibility (CI). CI is the most common phenotype induced by Wolbachia and results in the developmental arrest of embryos derived from crosses between Wolbachia-infected males and uninfected females. Although the molecular mechanisms of CI are currently unknown, several studies suggest that host sperm is modified by Wolbachia during spermatogenesis. RESULTS: We compared the gene expression of Drosophila melanogaster larval testes with and without the wMel strain of Wolbachia to identify candidate genes that could be involved in the interaction between Wolbachia and the insect host. Microarray, quantitative RT-PCR and in situ hybridization analyses were carried out on D. melanogaster larval testes to determine the effect of Wolbachia infection on host gene expression. A total of 296 genes were identified by microarray analysis to have at least a 1.5 fold change [q-value < 5%] in expression. When comparing Wolbachia-infected flies to uninfected flies, 167 genes were up-regulated and 129 genes down-regulated. Differential expression of genes related to metabolism, immunity, reproduction and other functions were observed. Quantitative RT-PCR (qRT-PCR) confirmed 12 genes are differentially expressed in the testes of the 3rd instar larvae of Wolbachia-infected and uninfected flies. In situ hybridization demonstrated that Wolbachia infection changes the expression of several genes putatively associated with spermatogenesis including JH induced protein-26 and Mst84Db, or involved in immune (kenny) or metabolism (CG4988-RA). CONCLUSIONS: Wolbachia change the gene expression of 296 genes in the larval testes of D. melanogaster including genes related to metabolism, immunity and reproduction. Interestingly, most of the genes putatively involved in immunity were up-regulated in the presence of Wolbachia. In contrast, most of the genes putatively associated with reproduction (especially spermatogenesis) were down-regulated in the presence of Wolbachia. These results suggest Wolbachia may activate the immune pathway but inhibit spermatogenesis. Our data provide a significant panel of candidate genes that may be involved in the interaction between Wolbachia and their insect hosts. This forms a basis to help elucidate the underlying mechanisms of Wolbachia-induced CI in Drosophila and the influence of Wolbachia on spermatogenesis
    corecore