8,122 research outputs found

    Transport in Graphene: Ballistic or Diffusive?

    Full text link
    We investigate the transport of electrons in disordered and pristine graphene devices. Fano shot noise, a standard metric to assess the mechanism for electronic transport in mesoscopic devices, has been shown to produce almost the same magnitude (1/3\approx 1/3) in ballistic and diffusive graphene devices and is therefore of limited applicability. We consider a two-terminal geometry where the graphene flake is contacted by narrow metallic leads. We propose that the dependence of the conductance on the position of one of the leads, a conductance profile, can give us insight into the charge flow, which can in turn be used to analyze the transport mechanism. Moreover, we simulate scanning probe microscopy (SPM) measurements for the same devices, which can visualize the flow of charge inside the device, thus complementing the transport calculations. From our simulations, we find that both the conductance profile and SPM measurements are excellent tools to assess the transport mechanism differentiating ballistic and diffusive graphene systems.Comment: 11 pages, 7 figures. Renamed by editorial staff as "Ballistic versus diffusive transport in graphene

    Dynamics of photoexcited carriers in graphene

    Full text link
    The nonequilibrium dynamics of carriers and phonons in graphene is investigated by solving the microscopic kinetic equations with the carrier-phonon and carrier-carrier Coulomb scatterings explicitly included. The Fermi distribution of hot carriers are found to be established within 100 fs and the temperatures of electrons in the conduction and valence bands are very close to each other, even when the excitation density and the equilibrium density are comparable, thanks to the strong inter-band Coulomb scattering. Moreover, the temporal evolutions of the differential transmission obtained from our calculations agree with the experiments by Wang et al. [Appl. Phys. Lett. 96, 081917 (2010)] and Hale et al. [Phys. Rev. B 83, 121404 (2011)] very well, with two distinct differential transmission relaxations presented. We show that the fast relaxation is due to the rapid carrier-phonon thermalization and the slow one is mainly because of the slow decay of hot phonons. In addition, it is found that the temperatures of the hot phonons in different branches are different and the temperature of hot carriers can be even lower than that of the hottest phonons. Finally, we show that the slow relaxation rate exhibits a mild valley in the excitation density dependence and is linearly dependent on the probe-photon energy.Comment: 9 pages, 4 figure

    Wave function Monte Carlo method for polariton condensates

    Full text link
    We present a quantum jump approach to describe coupled quantum and classical systems in the context of Bose-Einstein condensation in the solid state. In our formalism, the excitonic gain medium is described by classical rate equations, while the polariton modes are described fully quantum mechanically. We show the equivalence of our method with a master equation approach. As an application, we compute the linewidth of a single mode polariton condensate. Both the line broadening due to the interactions between polaritons and the interactions with the reservoir excitons is taken into account.Comment: 6 pages, 2 figure

    Theory of the optical absorption of light carrying orbital angular momentum by semiconductors

    Get PDF
    We develop a free-carrier theory of the optical absorption of light carrying orbital angular momentum (twisted light) by bulk semiconductors. We obtain the optical transition matrix elements for Bessel-mode twisted light and use them to calculate the wave function of photo-excited electrons to first-order in the vector potential of the laser. The associated net electric currents of first and second-order on the field are obtained. It is shown that the magnetic field produced at the center of the beam for the =1\ell=1 mode is of the order of a millitesla, and could therefore be detected experimentally using, for example, the technique of time-resolved Faraday rotation.Comment: Submitted to Phys. Rev. Lett. (23 Jan 2008

    Anomalous dephasing of bosonic excitons interacting with phonons in the vicinity of the Bose-Einstein condensation

    Full text link
    The dephasing and relaxation kinetics of bosonic excitons interacting with a thermal bath of acoustic phonons is studied after coherent pulse excitation. The kinetics of the induced excitonic polarization is calculated within Markovian equations both for subcritical and supercritical excitation with respect to a Bose-Einstein condensation (BEC). For excited densities n below the critical density n_c, an exponential polarization decay is obtained, which is characterized by a dephasing rate G=1/T_2. This dephasing rate due to phonon scattering shows a pronounced exciton-density dependence in the vicinity of the phase transition. It is well described by the power law G (n-n_c)^2 that can be understood by linearization of the equations around the equilibrium solution. Above the critical density we get a non-exponential relaxation to the final condensate value p^0 with |p(t)|-|p^0| ~1/t that holds for all densities. Furthermore we include the full self-consistent Hartree-Fock-Bogoliubov (HFB) terms due to the exciton-exciton interaction and the kinetics of the anomalous functions F_k= . The collision terms are analyzed and an approximation is used which is consistent with the existence of BEC. The inclusion of the coherent x-x interaction does not change the dephasing laws. The anomalous function F_k exhibits a clear threshold behaviour at the critical density.Comment: European Physical Journal B (in print

    Kinetics of electron-positron pair plasmas using an adaptive Monte Carlo method

    Get PDF
    A new algorithm for implementing the adaptive Monte Carlo method is given. It is used to solve the relativistic Boltzmann equations that describe the time evolution of a nonequilibrium electron-positron pair plasma containing high-energy photons and pairs. The collision kernels for the photons as well as pairs are constructed for Compton scattering, pair annihilation and creation, bremsstrahlung, and Bhabha & Moller scattering. For a homogeneous and isotropic plasma, analytical equilibrium solutions are obtained in terms of the initial conditions. For two non-equilibrium models, the time evolution of the photon and pair spectra is determined using the new method. The asymptotic numerical solutions are found to be in a good agreement with the analytical equilibrium states. Astrophysical applications of this scheme are discussed.Comment: 43 pages, 7 postscript figures, to appear in the Astrophysical Journa

    Revivals, collapses and magnetic-pulse generation in quantum rings

    Full text link
    Using a microscopic theory based on the density matrix formalism we investigate quantum revivals and collapses of the charge polarization and charge current dynamics in mesoscopic rings driven by short asymmetric electromagnetic pulses. The collapsed state is utilized for sub-picosecond switching of the current and associated magnetization, enabling thus the generation of pulsed magnetic fields with a tunable time structure and shape asymmetry which provides a new tool to study ultrafast spin-dynamics and ratchet-based effects.Comment: 4 pages, 2 figure

    Absorption spectrum of a weakly n-doped semiconductor quantum well

    Full text link
    We calculate, as a function of temperature and conduction band electron density, the optical absorption of a weakly n-doped, idealized semiconductor quantum well. In particular, we focus on the absorption band due to the formation of a charged exciton. We conceptualize the charged exciton as an itinerant excitation intimately linked to the dynamical response of itinerant conduction band electrons to the appearance of the photo-generated valence band hole. Numerical results for the absorption in the vicinity of the exciton line are presented and the spectral weights associated with, respectively, the charged exciton band and the exciton line are analyzed in detail. We find, in qualitative agreement with experimental data, that the spectral weight of the charged exciton grows with increasing conduction band electron density and/or decreasing temperature at the expense of the exciton.Comment: 5 pages, 4 figure

    The Nonlinear Debye-Onsager Relaxation Effect in Weakly Ionized Plasmas

    Full text link
    A weakly ionized plasma under the influence of a strong electric field is considered. Supposing a local Maxwellian distribution for the electron momenta the plasma is described by hydrodynamic equations for the pair distribution functions. These equations are solved and the relaxation field is calculated for an arbitrary field strength. It is found that the relaxation effect becomes lower with increasing strength of the electrical field.Comment: 4 pages, 1 figur
    corecore