639 research outputs found
Criticality and Superfluidity in liquid He-4 under Nonequilibrium Conditions
We review a striking array of recent experiments, and their theoretical
interpretations, on the superfluid transition in He in the presence of a
heat flux, . We define and evaluate a new set of critical point exponents.
The statics and dynamics of the superfluid-normal interface are discussed, with
special attention to the role of gravity. If is in the same direction as
gravity, a self-organized state can arise, in which the entire sample has a
uniform reduced temperature, on either the normal or superfluid side of the
transition. Finally, we review recent theory and experiment regarding the heat
capacity at constant . The excitement that surrounds this field arises from
the fact that advanced thermometry and the future availability of a
microgravity experimental platform aboard the International Space Station will
soon open to experimental exploration decades of reduced temperature that were
previously inaccessible.Comment: 16 pages, 9 figures, plus harvard.sty style file for references
Accepted for publication in Colloquia section of Reviews of Modern Physic
Liquid 4He near the superfluid transition in the presence of a heat current and gravity
The effects of a heat current and gravity in liquid 4He near the superfluid
transition are investigated for temperatures above and below T_lambda. We
present a renormalization-group calculation based on model F for the Green's
function in a self-consistent approximation which in quantum many-particle
theory is known as the Hartree approximation. The approach can handle a zero
average order parameter above and below T_lambda and includes effects of
vortices. We calculate the thermal conductivity and the specific heat for all
temperatures T and heat currents Q in the critical regime. Furthermore, we
calculate the temperature profile. Below T_lambda we find a second correlation
length which describes the dephasing of the order parameter field due to
vortices. We find dissipation and mutual friction of the superfluid-normal
fluid counterflow and calculate the Gorter-Mellink coefficient A. We compare
our theoretical results with recent experiments.Comment: 26 pages, 9 figure
BCS-BEC crossover at finite temperature in the broken-symmetry phase
The BCS-BEC crossover is studied in a systematic way in the broken-symmetry
phase between zero temperature and the critical temperature. This study bridges
two regimes where quantum and thermal fluctuations are, respectively,
important. The theory is implemented on physical grounds, by adopting a
fermionic self-energy in the broken-symmetry phase that represents fermions
coupled to superconducting fluctuations in weak coupling and to bosons
described by the Bogoliubov theory in strong coupling. This extension of the
theory beyond mean field proves important at finite temperature, to connect
with the results in the normal phase. The order parameter, the chemical
potential, and the single-particle spectral function are calculated numerically
for a wide range of coupling and temperature. This enables us to assess the
quantitative importance of superconducting fluctuations in the broken-symmetry
phase over the whole BCS-BEC crossover. Our results are relevant to the
possible realizations of this crossover with high-temperature cuprate
superconductors and with ultracold fermionic atoms in a trap.Comment: 21 pages, 15 figure
Dobrushin states in the \phi^4_1 model
We consider the van der Waals free energy functional in a bounded interval
with inhomogeneous Dirichlet boundary conditions imposing the two stable phases
at the endpoints. We compute the asymptotic free energy cost, as the length of
the interval diverges, of shifting the interface from the midpoint. We then
discuss the effect of thermal fluctuations by analyzing the \phi^4_1-measure
with Dobrushin boundary conditions. In particular, we obtain a nontrivial limit
in a suitable scaling in which the length of the interval diverges and the
temperature vanishes. The limiting state is not translation invariant and
describes a localized interface. This result can be seen as the probabilistic
counterpart of the variational convergence of the associated excess free
energy.Comment: 34 page
Ginzburg-Landau theory of superconductors with short coherence length
We consider Fermions in two dimensions with an attractive interaction in the
singlet d-wave channel of arbitrary strength. By means of a
Hubbard-Stratonovich transformation a statistical Ginzburg-Landau theory is
derived, which describes the smooth crossover from a weak-coupling BCS
superconductor to a condensate of composite Bosons. Adjusting the interaction
strength to the observed slope of H_c2 at T_c in the optimally doped high-T_c
compounds YBCO and BSCCO, we determine the associated values of the
Ginzburg-Landau correlation length xi and the London penetration depth lambda.
The resulting dimensionless ratio k_F xi(0) approx 5-8 and the Ginzburg-Landau
parameter kappa=lambda xi approx 90-100 agree well with the experimentally
observed values. These parameters indicate that the optimally doped materials
are still on the weak coupling side of the crossover to a Bose regime.Comment: 12 pages, RevTeX, 6 postscript figures, resubmitted with minor
changes in section III, to appear in Physical Review
Superconducting transitions from the pseudogap state: d-wave symmetry, lattice, and low-dimensional effects
We investigate the behavior of the superconducting transition temperature
within a previously developed BCS-Bose Einstein crossover picture. This
picture, based on a decoupling scheme of Kadanoff and Martin, further extended
by Patton, can be used to derive a simple form for the superconducting
transition temperature in the presence of a pseudogap. We extend previous work
which addressed the case of s-wave pairing in jellium, to explore the solutions
for T_c as a function of variable coupling in more physically relevant
situations. We thereby ascertain the effects of reduced dimensionality,
periodic lattices and a d-wave pairing interaction. Implications for the
cuprate superconductors are discussed.Comment: REVTeX, 11 pages, 6 EPS figures included, Replace with published
versio
Superconductivity with hard-core repulsion: BCS-Bose crossover and s-/d-wave competition
We consider fermions on a 2D lattice interacting repulsively on the same site
and attractively on the nearest neighbor sites. The model is relevant, for
instance, to study the competition between antiferromagnetism and
superconductivity in a Kondo lattice. We first solve the two-body problem to
show that in the dilute and strong coupling limit the s-wave Bose condensed
state is always the ground state. We then consider the many-body problem and
treat it at mean-field level by solving exactly the usual gap equation. This
guarantees that the superconducting wave-function correctly vanishes when the
two fermions (with antiparallel spin) sit on the same site. This fact has
important consequences on the superconducting state that are somewhat unusual.
In particular this implies a radial node-line for the gap function. When a next
neighbor hopping t' is present we find that the s-wave state may develop nodes
on the Fermi surface.Comment: 10 pages, 9 fig
A First-Landau-Level Laughlin/Jain Wave Function for the Fractional Quantum Hall Effect
We show that the introduction of a more general closed-shell operator allows
one to extend Laughlin's wave function to account for the richer hierarchies
(1/3, 2/5, 3/7 ...; 1/5, 2/9, 3/13, ..., etc.) found experimentally. The
construction identifies the special hierarchy states with condensates of
correlated electron clusters. This clustering implies a single-particle (ls)j
algebra within the first Landau level (LL) identical to that of multiply filled
LLs in the integer quantum Hall effect. The end result is a simple generalized
wave function that reproduces the results of both Laughlin and Jain, without
reference to higher LLs or projection.Comment: Revtex. In this replacement we show how to generate the Jain wave
function explicitly, by acting with the generalized ls closed-shell operator
discussed in the original version. We also walk the reader through a
classical 1d caricature of this problem so that he/she can better understand
why 2s+1, where s is the spin, should be associated with the number of
electrons associated with the underlying clusters or composites. 11 page
The pseudogap state in superconductors: Extended Hartree approach to time-dependent Ginzburg-Landau Theory
It is well known that conventional pairing fluctuation theory at the Hartree
level leads to a normal state pseudogap in the fermionic spectrum. Our goal is
to extend this Hartree approximated scheme to arrive at a generalized mean
field theory of pseudogapped superconductors for all temperatures . While an
equivalent approach to the pseudogap has been derived elsewhere using a more
formal Green's function decoupling scheme, in this paper we re-interpret this
mean field theory and BCS theory as well, and demonstrate how they naturally
relate to ideal Bose gas condensation. Here we recast the Hartree approximated
Ginzburg-Landau self consistent equations in a T-matrix form. This recasting
makes it possible to consider arbitrarily strong attractive coupling, where
bosonic degrees of freedom appear at considerably above . The
implications for transport both above and below are discussed. Below
we find two types of contributions. Those associated with fermionic
excitations have the usual BCS functional form. That they depend on the
magnitude of the excitation gap, nevertheless, leads to rather atypical
transport properties in the strong coupling limit, where this gap (as distinct
from the order parameter) is virtually -independent. In addition, there are
bosonic terms arising from non-condensed pairs whose transport properties are
shown here to be reasonably well described by an effective time-dependent
Ginzburg-Landau theory.Comment: 14 pages, 5 figures, REVTeX4, submitted to PRB; clarification of the
diagrammatic technique added, one figure update
Optically Pumped NMR Measurements of the Electron Spin Polarization in GaAs Quantum Wells near Landau Level Filling Factor nu=1/3
The Knight shift of Ga-71 nuclei is measured in two different electron-doped
multiple quantum well samples using optically pumped NMR. These data are the
first direct measurements of the electron spin polarization,
P(nu,T)=/max, near nu=1/3. The P(T) data at nu=1/3 probe the
neutral spin-flip excitations of a fractional quantum Hall ferromagnet. In
addition, the saturated P(nu) drops on either side of nu=1/3, even in a Btot=12
Tesla field. The observed depolarization is quite small, consistent with an
average of about 0.1 spin-flips per quasihole (or quasiparticle), a value which
does not appear to be explicable by the current theoretical understanding of
the FQHE near nu=1/3.Comment: 4 pages (REVTEX), 5 eps figures embedded in text; minor changes,
published versio
- …
