15 research outputs found
Pseudopotential study of binding properties of solids within generalized gradient approximations: The role of core-valence exchange-correlation
In ab initio pseudopotential calculations within density-functional theory
the nonlinear exchange-correlation interaction between valence and core
electrons is often treated linearly through the pseudopotential. We discuss the
accuracy and limitations of this approximation regarding a comparison of the
local density approximation (LDA) and generalized gradient approximations
(GGA), which we find to describe core-valence exchange-correlation markedly
different. (1) Evaluating the binding properties of a number of typical solids
we demonstrate that the pseudopotential approach and namely the linearization
of core-valence exchange-correlation are both accurate and limited in the same
way in GGA as in LDA. (2) Examining the practice to carry out GGA calculations
using pseudopotentials derived within LDA we show that the ensuing results
differ significantly from those obtained using pseudopotentials derived within
GGA. As principal source of these differences we identify the distinct behavior
of core-valence exchange-correlation in LDA and GGA which, accordingly,
contributes substantially to the GGA induced changes of calculated binding
properties.Comment: 13 pages, 6 figures, submitted to Phys. Rev. B, other related
publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm
Sequential reaction processes in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow /><mml:mrow><mml:mn>12</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mi mathvariant="normal">C</mml:mi><mml:mrow><mml:msup><mml:mrow><mml:mo>+</mml:mo></mml:mrow><mml:mrow><mml:mn>12</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:math>system at an energy of 28.7 MeV/nucleon
Elastic and inelastic transfer in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">B</mml:mi></mml:mrow><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>11</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mo>+</mml:mo></mml:mrow><mml:mrow><mml:mn>12</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>C system at 164.8 MeV c.m. energy
Fragmentation of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:mrow><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>12</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow></mml:math>projectiles interacting with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:mrow><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>12</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow></mml:math>,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">Al</mml:mi></mml:mrow><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>27</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow></mml:math>, and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">Ni</mml:mi></mml:mrow><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>58</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow></mml:math>nuclei at energy 28.7 MeV/nucleon
Kurse fuer auffaellige Kraftfahrer Zwischenbericht 1980
TIB: RN 7380 (7) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
Calculated atomic structures and electronic properties of GaP, InP, GaAs, and InAs (110) surfaces
Opposite Rotation Directions in the Synthesis and Hydrolysis of ATP by the ATP Synthase: Hints from a Subunit Asymmetry
The ATP synthase can be imagined as a reversible H(+)-translocating channel embedded in the membrane, FO portion, coupled to a protruding catalytic portion, F1. Under physiological conditions the F1FO complex synthesizes ATP by exploiting the transmembrane electrochemical gradient of protons and their downhill movement. Alternatively, under other patho-physiological conditions it exploits ATP hydrolysis to energize the membrane by uphill pumping protons. The reversibility of the mechanism is guaranteed by the structural coupling between the hydrophilic F1 and the hydrophobic FO. Which of the two opposite processes wins in the energy-transducing membrane complex depends on the thermodynamic balance between the protonmotive force (Δp) and the phosphorylation potential of ATP (ΔG P). Accordingly, while Δp prevalence drives ATP synthesis by translocating protons from the membrane P-side to the N-side and generating anticlockwise torque rotation (viewed from the matrix), ΔG P drives ATP hydrolysis by chemomechanical coupling of FO to F1 with clockwise torque. The direction of rotation is the same in all the ATP synthases, due to the conserved steric arrangement of the chiral a subunit of FO. The ability of this coupled bi-functional complex to produce opposite rotations in ATP synthesis and hydrolysis is explained on the basis of the a subunit asymmetry
