15 research outputs found

    Pseudopotential study of binding properties of solids within generalized gradient approximations: The role of core-valence exchange-correlation

    Full text link
    In ab initio pseudopotential calculations within density-functional theory the nonlinear exchange-correlation interaction between valence and core electrons is often treated linearly through the pseudopotential. We discuss the accuracy and limitations of this approximation regarding a comparison of the local density approximation (LDA) and generalized gradient approximations (GGA), which we find to describe core-valence exchange-correlation markedly different. (1) Evaluating the binding properties of a number of typical solids we demonstrate that the pseudopotential approach and namely the linearization of core-valence exchange-correlation are both accurate and limited in the same way in GGA as in LDA. (2) Examining the practice to carry out GGA calculations using pseudopotentials derived within LDA we show that the ensuing results differ significantly from those obtained using pseudopotentials derived within GGA. As principal source of these differences we identify the distinct behavior of core-valence exchange-correlation in LDA and GGA which, accordingly, contributes substantially to the GGA induced changes of calculated binding properties.Comment: 13 pages, 6 figures, submitted to Phys. Rev. B, other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    Augen

    No full text

    Fragmentation of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:mrow><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>12</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow></mml:math>projectiles interacting with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:mrow><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>12</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow></mml:math>,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">Al</mml:mi></mml:mrow><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>27</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow></mml:math>, and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">Ni</mml:mi></mml:mrow><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>58</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow></mml:math>nuclei at energy 28.7 MeV/nucleon

    Full text link

    Kurse fuer auffaellige Kraftfahrer Zwischenbericht 1980

    No full text
    TIB: RN 7380 (7) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Opposite Rotation Directions in the Synthesis and Hydrolysis of ATP by the ATP Synthase: Hints from a Subunit Asymmetry

    No full text
    The ATP synthase can be imagined as a reversible H(+)-translocating channel embedded in the membrane, FO portion, coupled to a protruding catalytic portion, F1. Under physiological conditions the F1FO complex synthesizes ATP by exploiting the transmembrane electrochemical gradient of protons and their downhill movement. Alternatively, under other patho-physiological conditions it exploits ATP hydrolysis to energize the membrane by uphill pumping protons. The reversibility of the mechanism is guaranteed by the structural coupling between the hydrophilic F1 and the hydrophobic FO. Which of the two opposite processes wins in the energy-transducing membrane complex depends on the thermodynamic balance between the protonmotive force (Δp) and the phosphorylation potential of ATP (ΔG P). Accordingly, while Δp prevalence drives ATP synthesis by translocating protons from the membrane P-side to the N-side and generating anticlockwise torque rotation (viewed from the matrix), ΔG P drives ATP hydrolysis by chemomechanical coupling of FO to F1 with clockwise torque. The direction of rotation is the same in all the ATP synthases, due to the conserved steric arrangement of the chiral a subunit of FO. The ability of this coupled bi-functional complex to produce opposite rotations in ATP synthesis and hydrolysis is explained on the basis of the a subunit asymmetry
    corecore