210 research outputs found
Discreteness and entropic fluctuations in GREM-like systems
Within generalized random energy models, we study the effects of energy
discreteness and of entropy extensivity in the low temperature phase. At zero
temperature, discreteness of the energy induces replica symmetry breaking, in
contrast to the continuous case where the ground state is unique. However, when
the ground state energy has an extensive entropy, the distribution of overlaps
P(q) instead tends towards a single delta function in the large volume limit.
Considering now the whole frozen phase, we find that P(q) varies continuously
with temperature, and that state-to-state fluctuations of entropy wash out the
differences between the discrete and continuous energy models.Comment: 7 pages, 3 figure, 2 figures are added, the volume changes from 4
pages to 7 page
Evidence for the double degeneracy of the ground-state in the 3D spin glass
A bivariate version of the multicanonical Monte Carlo method and its
application to the simulation of the three-dimensional Ising spin glass
are described. We found the autocorrelation time associated with this
particular multicanonical method was approximately proportional to the system
volume, which is a great improvement over previous methods applied to
spin-glass simulations. The principal advantage of this version of the
multicanonical method, however, was its ability to access information
predictive of low-temperature behavior. At low temperatures we found results on
the three-dimensional Ising spin glass consistent with a double
degeneracy of the ground-state: the order-parameter distribution function
converged to two delta-function peaks and the Binder parameter
approached unity as the system size was increased. With the same density of
states used to compute these properties at low temperature, we found their
behavior changing as the temperature is increased towards the spin glass
transition temperature. Just below this temperature, the behavior is consistent
with the standard mean-field picture that has an infinitely degenerate ground
state. Using the concept of zero-energy droplets, we also discuss the structure
of the ground-state degeneracy. The size distribution of the zero-energy
droplets was found to produce the two delta-function peaks of .Comment: 33 pages with 31 eps figures include
Direct sampling of complex landscapes at low temperatures: the three-dimensional +/-J Ising spin glass
A method is presented, which allows to sample directly low-temperature
configurations of glassy systems, like spin glasses. The basic idea is to
generate ground states and low lying excited configurations using a heuristic
algorithm. Then, with the help of microcanonical Monte Carlo simulations, more
configurations are found, clusters of configurations are determined and
entropies evaluated. Finally equilibrium configuration are randomly sampled
with proper Gibbs-Boltzmann weights.
The method is applied to three-dimensional Ising spin glasses with +- J
interactions and temperatures T<=0.5. The low-temperature behavior of this
model is characterized by evaluating different overlap quantities, exhibiting a
complex low-energy landscape for T>0, while the T=0 behavior appears to be less
complex.Comment: 9 pages, 7 figures, revtex (one sentence changed compared to v2
酸化物ガラスの塩基度と XPS による O1s 化学シフトの相関に関する考察
O1s binding energy measured by X-ray photoelectron spectroscopy (XPS) is candidate as a new tool to determine a new scale of Lewis basicity of oxide ions in glass. Some mathematical expressions for the basicity or XPS chemical shift, such as charge parameter and optical basicity, were compared with the experimental O1s binding energy in binary alkali oxide glasses. The expressions so far in use needed some modification in parameters. A new empirical expression introduced in this paper gives a new concept and universal scale of basicity
Expansion in CD39(+) CD4(+) Immunoregulatory T Cells and Rarity of Th17 Cells in HTLV-1 Infected Patients Is Associated with Neurological Complications
HTLV-1 infection is associated with several inflammatory disorders, including the neurodegenerative condition HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). It is unclear why a minority of infected subjects develops HAM/TSP. CD4(+) T cells are the main target of infection and play a pivotal role in regulating immunity to HTLV and are hypothesized to participate in the pathogenesis of HAM/TSP. the CD39 ectonucleotidase receptor is expressed on CD4(+) T cells and based on co-expression with CD25, marks T cells with distinct regulatory (CD39(+)CD25(+)) and effector (CD39(+)CD25(-)) function. Here, we investigated the expression of CD39 on CD4(+) T cells from a cohort of HAM/TSP patients, HTLV-1 asymptomatic carriers (AC), and matched uninfected controls. the frequency of CD39(+)CD4(+) T cells was increased in HTLV-1 infected patients, regardless of clinical status. More importantly, the proportion of the immunostimulatory CD39(+)CD25(-) CD4+ T-cell subset was significantly elevated in HAM/TSP patients as compared to AC and phenotypically had lower levels of the immunoinhibitory receptor, PD-1. We saw no difference in the frequency of CD39(+)CD25(+) regulatory (Treg) cells between AC and HAM/TSP patients. However, these cells transition from being anergic to displaying a polyfunctional cytokine response following HTLV-1 infection. CD39(-)CD25(+) T cell subsets predominantly secreted the inflammatory cytokine IL-17. We found that HAM/TSP patients had significantly fewer numbers of IL-17 secreting CD4(+) T cells compared to uninfected controls. Taken together, we show that the expression of CD39 is upregulated on CD4(+) T cells HAM/TSP patients. This upregulation may play a role in the development of the proinflammatory milieu through pathways both distinct and separate among the different CD39 T cell subsets. CD39 upregulation may therefore serve as a surrogate diagnostic marker of progression and could potentially be a target for interventions to reduce the development of HAM/TSP.National Institute of Allergies and Infectious DiseasesNational Institutes of HealthUniversity of CaliforniaSan Francisco-Gladstone Institute of Virology & Immunology Center for AIDS ResearchFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)John E. Fogarty International CenterNational Center for Research ResourcesNational Institute of General Medical Sciences from the National Institutes of HealthUniv Calif San Francisco, Dept Med, Div Expt Med, San Francisco, CA 94143 USAUniv Hawaii, John A Burns Sch Med, Dept Trop Med, Hawaii Ctr AIDS, Honolulu, HI 96822 USAUniv São Paulo, Sch Med, Deparment Infect Dis, São Paulo, BrazilUniv São Paulo, Sch Med, Div Clin Immunol & Allergy, São Paulo, BrazilFuncacao Prosangue, Hemoctr São Paulo, Mol Biol Lab, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Translat Med, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Translat Med, São Paulo, BrazilSan Francisco-Gladstone Institute of Virology & Immunology Center for AIDS Research: P30 AI027763FAPESP: 04/15856-9/KallasFAPESP: 2010/05845-0/KallasFAPESP: 11/12297-2/SanabaniJohn E. Fogarty International Center: D43 TW00003National Center for Research Resources: 5P20RR016467-11National Institute of General Medical Sciences from the National Institutes of Health: 8P20GM103466-11Web of Scienc
Effect of splenectomy on type-1/type-2 cytokine gene expression in a patient with adult idiopathic thrombocytopenic purpura (ITP)
BACKGROUND: In view of clinical observations and laboratory results that support a central role of the spleen in idiopathic thrombocytopenic purpura (ITP) pathophysiology, we studied the effect of splenectomy on type-1 and type-2 cytokine gene expression in an adult ITP case, refractory to conservative treatment. CASE PRESENTATION: The patient was subjected to splenectomy 9 months after the diagnosis with complete response, attaining platelet counts over 150 × 10(6)/L within 10 days after the operation. Two consecutive blood samples were obtained from the patient, 3 and 7 months after the splenectomy for the purposes of this study. A control group consisted of 11 healthy adults. Peripheral blood mononuclear cells were prepared from each blood sample and cultured in vitro for 8 h with the addition of the mitogens phorbol myristate acetate and ionomycin. Total cellular RNA extracted from 10(6 )cells was submitted to semiquantitave reverse transcriptase-polymerase chain reaction (RT-PCR) for the amplification of IL-2, IFN-γ, IL-4, IL-5, and IL-10 metagraphs. The PCR products were run on ethidium-stained agarose gels, photographed and quantified by densitometry. A steep decrease of type-1 cytokine expression (IL-2, IFN-γ) and their calculated sum expressing Th1 activity was observed at 7 months post-splenectomy compared to 3 months post-splenectomy, in parallel with a rise of platelet count from 190 × 10(6)/L to 265 × 10(6)/L. The change of type-2 cytokine expression (IL-4, IL-5, IL-10) was slight and the Th2 activity (IL-4+IL-5) remained largely unchanged. The Th1/Th2 ratio, that reflects the pathogenic disease-specific T-cell immune deviation, was accordingly reduced 7 months post-splenectomy (Th1/Th2 = 1.3) compared to 3 months (Th1/Th2 = 3.5). CONCLUSIONS: The reduction of the Th1/Th2 cytokine ratio that was observed over time after splenectomy was accompanied by full clinical remission. Nevertheless, the persistence of a type-1 polarization, even after several months following spleen removal, is suggestive of a more basic abnormality of the immune function in these patients
Small nucleoli are a cellular hallmark of longevity
Animal lifespan is regulated by conserved metabolic signalling pathways and specific transcription factors, but whether these pathways affect common downstream mechanisms remains largely elusive. Here we show that NCL-1/TRIM2/Brat tumour suppressor extends lifespan and limits nucleolar size in the major C. elegans longevity pathways, as part of a convergent mechanism focused on the nucleolus. Long-lived animals representing distinct longevity pathways exhibit small nucleoli, and decreased expression of rRNA, ribosomal proteins, and the nucleolar protein fibrillarin, dependent on NCL-1. Knockdown of fibrillarin also reduces nucleolar size and extends lifespan. Among wildtype C. elegans, individual nucleolar size varies, but is highly predictive for longevity. Long-lived dietary restricted fruit flies and insulin-like-peptide mutants exhibit small nucleoli and fibrillarin expression, as do long-lived dietary restricted and IRS1 knockout mice. Furthermore, human muscle biopsies from individuals who underwent modest dietary restriction coupled with exercise also display small nucleoli. We suggest that small nucleoli are a cellular hallmark of longevity and metabolic health conserved across taxa
Ribonucleotide reductase inhibitors suppress SAMHD1 ara‐CTPase activity enhancing cytarabine efficacy
The deoxycytidine analogue cytarabine (ara‐C) remains the backbone treatment of acute myeloid leukaemia (AML) as well as other haematological and lymphoid malignancies, but must be combined with other chemotherapeutics to achieve cure. Yet, the underlying mechanism dictating synergistic efficacy of combination chemotherapy remains largely unknown. The dNTPase SAMHD1, which regulates dNTP homoeostasis antagonistically to ribonucleotide reductase (RNR), limits ara‐C efficacy by hydrolysing the active triphosphate metabolite ara‐CTP. Here, we report that clinically used inhibitors of RNR, such as gemcitabine and hydroxyurea, overcome the SAMHD1‐mediated barrier to ara‐C efficacy in primary blasts and mouse models of AML, displaying SAMHD1‐dependent synergy with ara‐C. We present evidence that this is mediated by dNTP pool imbalances leading to allosteric reduction of SAMHD1 ara‐CTPase activity. Thus, SAMHD1 constitutes a novel biomarker for combination therapies of ara‐C and RNR inhibitors with immediate consequences for clinical practice to improve treatment of AML
Development of an In Vitro Model for the Multi-Parametric Quantification of the Cellular Interactions between Candida Yeasts and Phagocytes
We developed a new in vitro model for a multi-parameter characterization of the time course interaction of Candida fungal cells with J774 murine macrophages and human neutrophils, based on the use of combined microscopy, fluorometry, flow cytometry and viability assays. Using fluorochromes specific to phagocytes and yeasts, we could accurately quantify various parameters simultaneously in a single infection experiment: at the individual cell level, we measured the association of phagocytes to fungal cells and phagocyte survival, and monitored in parallel the overall phagocytosis process by measuring the part of ingested fungal cells among the total fungal biomass that changed over time. Candida albicans, C. glabrata, and C. lusitaniae were used as a proof of concept: they exhibited species-specific differences in their association rate with phagocytes. The fungal biomass uptaken by the phagocytes differed significantly according to the Candida species. The measure of the survival of fungal and immune cells during the interaction showed that C. albicans was the more aggressive yeast in vitro, destroying the vast majority of the phagocytes within five hours. All three species of Candida were able to survive and to escape macrophage phagocytosis either by the intraphagocytic yeast-to-hyphae transition (C. albicans) and the fungal cell multiplication until phagocytes burst (C. glabrata, C. lusitaniae), or by the avoidance of phagocytosis (C. lusitaniae). We demonstrated that our model was sensitive enough to quantify small variations of the parameters of the interaction. The method has been conceived to be amenable to the high-throughput screening of mutants in order to unravel the molecular mechanisms involved in the interaction between yeasts and host phagocytes
- …
