603 research outputs found

    Rotational Alignment Altered by Source Position Correlations

    Get PDF
    In the construction of modern Celestial Reference Frames (CRFs) the overall rotational alignment is only weakly constrained by the data. Therefore, common practice has been to apply a 3-dimensional No-Net-Rotation (NNR) constraint in order to align an under-construction frame to the ICRF. We present evidence that correlations amongst source position parameters must be accounted for in order to properly align a CRF at the 5-10 (mu)as level of uncertainty found in current work. Failure to do so creates errors at the 10-40 (mu)as level

    Deep Imaging of AXJ2019+112: The Luminosity of a ``Dark Cluster''

    Get PDF
    We detect a distant cluster of galaxies centered on the QSO lens and luminous X-ray source AXJ2019+112, a.k.a. ``The Dark Cluster'' (Hattori et al 1997). Using deep V,I Keck images and wide-field K_s imaging from the NTT, a tight red sequence of galaxies is identified within a radius of 0.2 h^{-1} Mpc of the known z=1.01 elliptical lensing galaxy. The sequence, which includes the central elliptical galaxy, has a slope in good agreement with the model predictions of Kodama et al (1998) for z~1. We estimate the integrated rest-frame luminosity of the cluster to be L_V > 3.2 x 10^{11}h^{-2}L_{\sun} (after accounting for significant extinction at the low latitude of this field), more than an order of magnitude higher than previous estimates. The central region of the cluster is deconvolved using the technique of Magain, Courbin & Sohy (1998), revealing a thick central arc coincident with an extended radio source. All the observed lensing features are readily explained by differential magnification of a radio loud AGN by a shallow elliptical potential. The QSO must lie just outside the diamond caustic, producing two images, and the arc is a highly magnified image formed from a region close to the center of the host galaxy, projecting inside the caustic. The mass--to--light ratio within an aperture of 0.4 h ^{-1} Mpc is M_x/L_V= 224^{+112}_{-78}h(M/L_V)_{\sun}, using the X-ray temperature. The strong lens model yields a compatible value, M/L_V= 372^{+94}_{-94}h(M/L_V)_{\sun}, whereas an independent weak lensing analysis sets an upper limit of M/L_V <520 h(M/L_V)_{\sun}, typical of massive clusters.Comment: AAS Latex format, 24 pages, 9 figures. Fig 1a,b available at http://astro.berkeley.edu/~benitezn/cluster.html . Submitted to ApJ on August 15t

    JPL IGS Analysis Center Report, 2001-2003

    Get PDF
    Three GPS orbit and clock products are currently provided by JPL for consideration by the IGS. Each differs in its latency and quality, with later results being more accurate. Results are typically available in both IGS and GIPSY formats via anonymous ftp. Current performance based on comparisons with the IGS final products is summarized. Orbit performance was determined by computing the 3D RMS difference between each JPL product and the IGS final orbits based on 15 minute estimates from the sp3 files. Clock performance was computed as the RMS difference after subtracting a linear trend based on 15 minute estimates from the sp3 files

    Radio Astronomy

    Get PDF
    Contains table of contents for Section 4 and reports on eight research projects.National Science Foundation Grant AST 88-19848National Aeronautics and Space Administration Goddard Space Flight Center Grant NAGW-2310SM Systems and Research, IncNational Aeronautics and Space Administration Goddard Space Flight Center Grant NAG 5-537National Aeronautics and Space Administration Goddard Space Flight Center Grant NAG 5-10Leaders for Manufacturing ProgramNational Aeronautics and Space Administration Goddard Space Flight Center Grant NAS 5-3079

    Improved treatment of global positioning system force parameters in precise orbit determination applications

    Get PDF
    Data collected from a worldwide 1992 experiment were processed at JPL to determine precise orbits for the satellites of the Global Positioning System (GPS). A filtering technique was tested to improve modeling of solar-radiation pressure force parameters for GPS satellites. The new approach improves orbit quality for eclipsing satellites by a factor of two, with typical results in the 25- to 50-cm range. The resultant GPS-based estimates for geocentric coordinates of the tracking sites, which include the three DSN sites, are accurate to 2 to 8 cm, roughly equivalent to 3 to 10 nrad of angular measure

    Radio Astronomy

    Get PDF
    Contains table of contents for Section 4 and reports on twelve research projects.National Science Foundation Grant AST 88-19848Jet Propulsion Laboratory Contract 957687National Aeronautics and Space Administration Grant NAGW 1386National Science Foundation Grant AST 88-19848Annie Jump Cannon AwardSM Systems and Research, Inc.U.S. Navy Office of Naval Research Contract N00014-88-K-2016NASA/Goddard Space Flight Center Grant NAG 5-537NASA/Goddard Space Flight Center Grant NAG 5-10Woods Hole Oceanographic Institution Contract SC-28860Leaders for Manufacturing Progra

    Radio Astronomy

    Get PDF
    Contains table of contents for Section 4 and reports on nine research projects.National Science Foundation Grant AST 88-19848National Science Foundation Grant AST 90-22501Alfred P. Sloan FellowshipNational Science Foundation Presidential Young Investigator AwardNational Aeronautics and Space Administration Grant NAGW-2310David and Lucile Packard FellowshipSM Systems and Research CorporationNational Aeronautics and Space Administration/Goddard Space Flight Center Contract NAS 5-30791National Aeronautics and Space Administration/Goddard Space Flight Center Grant NAG5-10Leaders for Manufacturing Progra

    Radio Astronomy

    Get PDF
    Contains table of contents and reports on seven research projects.National Science Foundation (Grant AST 86-17172)National Aeronautics and Space AdministrationJet Propulsion LaboratoryNASA/Goddard Space Flight Center (Grant NAG5-10)SM Systems and Research, Inc.U.S. Navy Office of Naval Research (Contract N00014-86-C-2114)Center for Advanced Television StudiesNASA/Goddard Space Flight Center (Grant NAG5-537

    Measurement of the τ\tau Lepton Polarization and its Forward-Backward Asymmetry from Z0Z^{0} Decays

    Get PDF

    Radio Astronomy

    Get PDF
    Contains reports on nine research projects.National Science Foundation (Grant AST 86-17172)National Aeronautics and Space Administration (Contract NAS7-918)Jet Propulsion Laboratory (Contract 958048)U.S. Navy - Office of Naval Research (Contract N00014-84-C-2082)U.S. Navy - Office of Naval Research (Contract N00014-86-C-2114)SM Systems and Research, Inc.National Aeronautics and Space Administration/Goddard Space Flight Center (Grant NAG5-10)Center for Advanced Television StudiesBrazil, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (Grant 300.832-82)National Aeronautics and Space Administration/Goddard Space Flight Center (Grant NAG5-537
    corecore