4,715 research outputs found
Structure and electronic structure of Metal-Organic Frameworks within the Density-Functional based Tight-Binding method
Density-functional based tight-binding is a powerful method to describe large
molecules and materials. Metal-Organic Frameworks (MOFs), materials with
interesting catalytic properties and with very large surface areas have been
developed and have become commercially available. Unit cells of MOFs typically
include hundreds of atoms, which make the application of standard
Density-Functional methods computationally very expensive, sometimes even
unfeasible. The aim of this paper is to prepare and to validate the
Self-Consistent Charge Density-Functional based Tight Binding (SCC-DFTB) method
for MOFs containing Cu, Zn and Al metal centers. The method has been validated
against full hybrid density-functional calculations for model clusters, against
gradient corrected density-functional calculations for supercells, and against
experiment. Moreover, the modular concept of MOF chemistry has been discussed
on the basis of their electronic properties. We concentrate on MOFs comprising
three common connector units: copper paddlewheels (HKUST-1), zinc oxide Zn4O
tetrahedron (MOF-5, MOF-177, DUT-6 (MOF-205)) and aluminium oxide AlO4(OH)2
octahedron (MIL-53). We show that SCC-DFTB predicts structural parameters with
a very good accuracy (with less than 5% deviation, even for adsorbed CO and H2O
on HKUST-1), while adsorption energies differ by 12 kJ mol-1 or less for CO and
water compared to DFT benchmark calculations.Comment: Submitted to Phys. Status Solidi
Two-Dimensional Inversion Asymmetric Topological Insulators in Functionalized III-Bi Bilayers
The search for inversion asymmetric topological insulators (IATIs) persists
as an effect for realizing new topological phenomena. However, so for only a
few IATIs have been discovered and there is no IATI exhibiting a large band gap
exceeding 0.6 eV. Using first-principles calculations, we predict a series of
new IATIs in saturated Group III-Bi bilayers. We show that all these IATIs
preserve extraordinary large bulk band gaps which are well above
room-temperature, allowing for viable applications in room-temperature
spintronic devices. More importantly, most of these systems display large bulk
band gaps that far exceed 0.6 eV and, part of them even are up to ~1 eV, which
are larger than any IATIs ever reported. The nontrivial topological situation
in these systems is confirmed by the identified band inversion of the band
structures and an explicit demonstration of the topological edge states.
Interestingly, the nontrivial band order characteristics are intrinsic to most
of these materials and are not subject to spin-orbit coupling. Owning to their
asymmetric structures, remarkable Rashba spin splitting is produced in both the
valence and conduction bands of these systems. These predictions strongly
revive these new systems as excellent candidates for IATI-based novel
applications.Comment: 17 pages,5figure
Phase diagram and spin Hamiltonian of weakly-coupled anisotropic S=1/2 chains in CuCl2*2((CD3)2SO)
Field-dependent specific heat and neutron scattering measurements were used
to explore the antiferromagnetic S=1/2 chain compound CuCl2 * 2((CD3)2SO). At
zero field the system acquires magnetic long-range order below TN=0.93K with an
ordered moment of 0.44muB. An external field along the b-axis strengthens the
zero-field magnetic order, while fields along the a- and c-axes lead to a
collapse of the exchange stabilized order at mu0 Hc=6T and mu0 Hc=3.5T,
respectively (for T=0.65K) and the formation of an energy gap in the excitation
spectrum. We relate the field-induced gap to the presence of a staggered
g-tensor and Dzyaloshinskii-Moriya interactions, which lead to effective
staggered fields for magnetic fields applied along the a- and c-axes.
Competition between anisotropy, inter-chain interactions and staggered fields
leads to a succession of three phases as a function of field applied along the
c-axis. For fields greater than mu0 Hc, we find a magnetic structure that
reflects the symmetry of the staggered fields. The critical exponent, beta, of
the temperature driven phase transitions are indistinguishable from those of
the three-dimensional Heisenberg magnet, while measurements for transitions
driven by quantum fluctuations produce larger values of beta.Comment: revtex 12 pages, 11 figure
A single atom detector integrated on an atom chip: fabrication, characterization and application
We describe a robust and reliable fluorescence detector for single atoms that
is fully integrated into an atom chip. The detector allows spectrally and
spatially selective detection of atoms, reaching a single atom detection
efficiency of 66%. It consists of a tapered lensed single-mode fiber for
precise delivery of excitation light and a multi-mode fiber to collect the
fluorescence. The fibers are mounted in lithographically defined holding
structures on the atom chip. Neutral 87Rb atoms propagating freely in a
magnetic guide are detected and the noise of their fluorescence emission is
analyzed. The variance of the photon distribution allows to determine the
number of detected photons / atom and from there the atom detection efficiency.
The second order intensity correlation function of the fluorescence shows
near-perfect photon anti-bunching and signs of damped Rabi-oscillations. With
simple improvements one can boost the detection efficiency to > 95%.Comment: 24 pages, 11 figure
Wideband digital phase comparator for high current shunts
A wideband phase comparator for precise measurements of phase difference of
high current shunts has been developed at INRIM. The two-input digital phase
detector is realized with a precision wideband digitizer connected through a
pair of symmetric active guarded transformers to the outputs of the shunts
under comparison. Data are first acquired asynchronously, and then transferred
from on-board memory to host memory. Because of the large amount of data
collected the filtering process and the analysis algorithms are performed
outside the acquisition routine. Most of the systematic errors can be
compensated by a proper inversion procedure.
The system is suitable for comparing shunts in a wide range of currents, from
several hundred of milliampere up to 100 A, and frequencies ranging between 500
Hz and 100 kHz. Expanded uncertainty (k=2) less than 0.05 mrad, for frequency
up to 100 kHz, is obtained in the measurement of the phase difference of a
group of 10 A shunts, provided by some European NMIs, using a digitizer with
sampling frequency up to 1 MHz. An enhanced version of the phase comparator
employs a new digital phase detector with higher sampling frequency and
vertical resolution. This permits to decrease the contribution to the
uncertainty budget of the phase detector of a factor two from 20 kHz to 100
kHz. Theories and experiments show that the phase difference between two high
precision wideband digitizers, coupled as phase detector, depends on multiple
factors derived from both analog and digital imprint of each sampling system.Comment: 20 pages, 9 figure
A generalization of the Heine--Stieltjes theorem
We extend the Heine-Stieltjes Theorem to concern all (non-degenerate)
differential operators preserving the property of having only real zeros. This
solves a conjecture of B. Shapiro. The new methods developed are used to
describe intricate interlacing relations between the zeros of different pairs
of solutions. This extends recent results of Bourget, McMillen and Vargas for
the Heun equation and answers their question on how to generalize their results
to higher degrees. Many of the results are new even for the classical case.Comment: 12 pages, typos corrected and refined the interlacing theorem
Asymptotics of skew orthogonal polynomials
Exact integral expressions of the skew orthogonal polynomials involved in
Orthogonal (beta=1) and Symplectic (beta=4) random matrix ensembles are
obtained: the (even rank) skew orthogonal polynomials are average
characteristic polynomials of random matrices. From there, asymptotics of the
skew orthogonal polynomials are derived.Comment: 17 pages, Late
- …
