4,715 research outputs found

    Structure and electronic structure of Metal-Organic Frameworks within the Density-Functional based Tight-Binding method

    Full text link
    Density-functional based tight-binding is a powerful method to describe large molecules and materials. Metal-Organic Frameworks (MOFs), materials with interesting catalytic properties and with very large surface areas have been developed and have become commercially available. Unit cells of MOFs typically include hundreds of atoms, which make the application of standard Density-Functional methods computationally very expensive, sometimes even unfeasible. The aim of this paper is to prepare and to validate the Self-Consistent Charge Density-Functional based Tight Binding (SCC-DFTB) method for MOFs containing Cu, Zn and Al metal centers. The method has been validated against full hybrid density-functional calculations for model clusters, against gradient corrected density-functional calculations for supercells, and against experiment. Moreover, the modular concept of MOF chemistry has been discussed on the basis of their electronic properties. We concentrate on MOFs comprising three common connector units: copper paddlewheels (HKUST-1), zinc oxide Zn4O tetrahedron (MOF-5, MOF-177, DUT-6 (MOF-205)) and aluminium oxide AlO4(OH)2 octahedron (MIL-53). We show that SCC-DFTB predicts structural parameters with a very good accuracy (with less than 5% deviation, even for adsorbed CO and H2O on HKUST-1), while adsorption energies differ by 12 kJ mol-1 or less for CO and water compared to DFT benchmark calculations.Comment: Submitted to Phys. Status Solidi

    Two-Dimensional Inversion Asymmetric Topological Insulators in Functionalized III-Bi Bilayers

    Full text link
    The search for inversion asymmetric topological insulators (IATIs) persists as an effect for realizing new topological phenomena. However, so for only a few IATIs have been discovered and there is no IATI exhibiting a large band gap exceeding 0.6 eV. Using first-principles calculations, we predict a series of new IATIs in saturated Group III-Bi bilayers. We show that all these IATIs preserve extraordinary large bulk band gaps which are well above room-temperature, allowing for viable applications in room-temperature spintronic devices. More importantly, most of these systems display large bulk band gaps that far exceed 0.6 eV and, part of them even are up to ~1 eV, which are larger than any IATIs ever reported. The nontrivial topological situation in these systems is confirmed by the identified band inversion of the band structures and an explicit demonstration of the topological edge states. Interestingly, the nontrivial band order characteristics are intrinsic to most of these materials and are not subject to spin-orbit coupling. Owning to their asymmetric structures, remarkable Rashba spin splitting is produced in both the valence and conduction bands of these systems. These predictions strongly revive these new systems as excellent candidates for IATI-based novel applications.Comment: 17 pages,5figure

    Phase diagram and spin Hamiltonian of weakly-coupled anisotropic S=1/2 chains in CuCl2*2((CD3)2SO)

    Full text link
    Field-dependent specific heat and neutron scattering measurements were used to explore the antiferromagnetic S=1/2 chain compound CuCl2 * 2((CD3)2SO). At zero field the system acquires magnetic long-range order below TN=0.93K with an ordered moment of 0.44muB. An external field along the b-axis strengthens the zero-field magnetic order, while fields along the a- and c-axes lead to a collapse of the exchange stabilized order at mu0 Hc=6T and mu0 Hc=3.5T, respectively (for T=0.65K) and the formation of an energy gap in the excitation spectrum. We relate the field-induced gap to the presence of a staggered g-tensor and Dzyaloshinskii-Moriya interactions, which lead to effective staggered fields for magnetic fields applied along the a- and c-axes. Competition between anisotropy, inter-chain interactions and staggered fields leads to a succession of three phases as a function of field applied along the c-axis. For fields greater than mu0 Hc, we find a magnetic structure that reflects the symmetry of the staggered fields. The critical exponent, beta, of the temperature driven phase transitions are indistinguishable from those of the three-dimensional Heisenberg magnet, while measurements for transitions driven by quantum fluctuations produce larger values of beta.Comment: revtex 12 pages, 11 figure

    A single atom detector integrated on an atom chip: fabrication, characterization and application

    Full text link
    We describe a robust and reliable fluorescence detector for single atoms that is fully integrated into an atom chip. The detector allows spectrally and spatially selective detection of atoms, reaching a single atom detection efficiency of 66%. It consists of a tapered lensed single-mode fiber for precise delivery of excitation light and a multi-mode fiber to collect the fluorescence. The fibers are mounted in lithographically defined holding structures on the atom chip. Neutral 87Rb atoms propagating freely in a magnetic guide are detected and the noise of their fluorescence emission is analyzed. The variance of the photon distribution allows to determine the number of detected photons / atom and from there the atom detection efficiency. The second order intensity correlation function of the fluorescence shows near-perfect photon anti-bunching and signs of damped Rabi-oscillations. With simple improvements one can boost the detection efficiency to > 95%.Comment: 24 pages, 11 figure

    Wideband digital phase comparator for high current shunts

    Full text link
    A wideband phase comparator for precise measurements of phase difference of high current shunts has been developed at INRIM. The two-input digital phase detector is realized with a precision wideband digitizer connected through a pair of symmetric active guarded transformers to the outputs of the shunts under comparison. Data are first acquired asynchronously, and then transferred from on-board memory to host memory. Because of the large amount of data collected the filtering process and the analysis algorithms are performed outside the acquisition routine. Most of the systematic errors can be compensated by a proper inversion procedure. The system is suitable for comparing shunts in a wide range of currents, from several hundred of milliampere up to 100 A, and frequencies ranging between 500 Hz and 100 kHz. Expanded uncertainty (k=2) less than 0.05 mrad, for frequency up to 100 kHz, is obtained in the measurement of the phase difference of a group of 10 A shunts, provided by some European NMIs, using a digitizer with sampling frequency up to 1 MHz. An enhanced version of the phase comparator employs a new digital phase detector with higher sampling frequency and vertical resolution. This permits to decrease the contribution to the uncertainty budget of the phase detector of a factor two from 20 kHz to 100 kHz. Theories and experiments show that the phase difference between two high precision wideband digitizers, coupled as phase detector, depends on multiple factors derived from both analog and digital imprint of each sampling system.Comment: 20 pages, 9 figure

    A generalization of the Heine--Stieltjes theorem

    Full text link
    We extend the Heine-Stieltjes Theorem to concern all (non-degenerate) differential operators preserving the property of having only real zeros. This solves a conjecture of B. Shapiro. The new methods developed are used to describe intricate interlacing relations between the zeros of different pairs of solutions. This extends recent results of Bourget, McMillen and Vargas for the Heun equation and answers their question on how to generalize their results to higher degrees. Many of the results are new even for the classical case.Comment: 12 pages, typos corrected and refined the interlacing theorem

    Asymptotics of skew orthogonal polynomials

    Full text link
    Exact integral expressions of the skew orthogonal polynomials involved in Orthogonal (beta=1) and Symplectic (beta=4) random matrix ensembles are obtained: the (even rank) skew orthogonal polynomials are average characteristic polynomials of random matrices. From there, asymptotics of the skew orthogonal polynomials are derived.Comment: 17 pages, Late
    corecore