39 research outputs found
Functional Analysis of the Cytoskeleton Protein MreB from Chlamydophila pneumoniae
In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae
Chlamydiae in febrile children with respiratory tract symptoms and age-matched controls, Ghana.
Members of the javax.xml.bind.JAXBElement@d71ef36 order are obligate intracellular pathogens causing acute and chronic infectious diseases. javax.xml.bind.JAXBElement@1d3522b1 are established agents of community- and zoonotically acquired respiratory tract infections, and emerging pathogens among the javax.xml.bind.JAXBElement@378e5899 -related bacteria have been implicated in airway infections. The role of both in airway infections in Africa is underexplored. We performed a case -control study on the prevalence of javax.xml.bind.JAXBElement@12f1b6f0 and javax.xml.bind.JAXBElement@10fbf3c7 -related emerging pathogens in children with febrile respiratory tract infections in West Africa, Ghana. Using a pan- javax.xml.bind.JAXBElement@246f6bc3 broad-range real-time PCR, we detected chlamydial DNA in 11 (1.9%) of 572 hospitalized febrile children with respiratory tract symptoms and in 24 (4.3%) of 560 asymptomatic age-matched controls (p 0.03). javax.xml.bind.JAXBElement@6160b547 were found to be common among both symptomatic and healthy Ghanaian children, with javax.xml.bind.JAXBElement@7e39c9ad being the most prevalent species. javax.xml.bind.JAXBElement@31136866 were detected in two children without symptoms but not in the symptomatic group. We identified neither javax.xml.bind.JAXBElement@6e7d2cf4 nor javax.xml.bind.JAXBElement@ad366f1 but a member of a new chlamydial family that shared 90.2% sequence identity with the 16S rRNA gene of the zoonotic pathogen javax.xml.bind.JAXBElement@3a17b2a7 . In addition, we found a new javax.xml.bind.JAXBElement@10edaddb -related species that belonged to a novel family sharing 91.3% 16S rRNA sequence identity with javax.xml.bind.JAXBElement@177039be Syngnamydia venezia. The prevalence and spectrum of chlamydial species differed from previous results obtained from children of other geographic regions and our study indicates that both, javax.xml.bind.JAXBElement@605214f and javax.xml.bind.JAXBElement@18029a2 -related bacteria, are not clearly linked to clinical symptoms in Ghanaian children
Pentachlorophenol Induction of the Pseudomonas aeruginosa mexAB-oprM Efflux Operon: Involvement of Repressors NalC and MexR and the Antirepressor ArmR
Pentachlorophenol (PCP) induced expression of the NalC repressor-regulated PA3720-armR operon and the MexR repressor-controlled mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. PCP's induction of PA3720-armR resulted from its direct modulation of NalC, the repressor's binding to PA3720-armR promoter-containing DNA as seen in electromobility shift assays (EMSAs) being obviated in the presence of this agent. The NalC binding site was localized to an inverted repeat (IR) sequence upstream of PA3720-armR and overlapping a promoter region whose transcription start site was mapped. While modulation of MexR by the ArmR anti-repressor explains the upregulation of mexAB-oprM in nalC mutants hyperexpressing PA3720-armR, the induction of mexAB-oprM expression by PCP is not wholly explainable by PCP induction of PA3720-armR and subsequent ArmR modulation of MexR, inasmuch as armR deletion mutants still showed PCP-inducible mexAB-oprM expression. PCP failed, however, to induce mexAB-oprM in a mexR deletion strain, indicating that MexR was required for this, although PCP did not modulate MexR binding to mexAB-oprM promoter-containing DNA in vitro. One possibility is that MexR responds to PCP-generated in vivo effector molecules in controlling mexAB-oprM expression in response to PCP. PCP is an unlikely effector and substrate for NalC and MexAB-OprM - its impact on NalC binding to the PA3720-armR promoter DNA occurred only at high µM levels - suggesting that it mimics an intended phenolic effector/substrate(s). In this regard, plants are an abundant source of phenolic antimicrobial compounds and, so, MexAB-OprM may function to protect P. aeruginosa from plant antimicrobials that it encounters in nature
The Wolbachia endosymbiont as an anti-filarial nematode target
Human disease caused by parasitic filarial nematodes is a major cause of global morbidity. The parasites are transmitted by arthropod intermediate hosts and are responsible for lymphatic filariasis (elephantiasis) or onchocerciasis (river blindness). Within these filarial parasites are intracellular alpha-proteobacteria, Wolbachia, that were first observed almost 30 years ago. The obligate endosymbiont has been recognized as a target for anti-filarial nematode chemotherapy as evidenced by the loss of worm fertility and viability upon antibiotic treatment in an extensive series of human trials. While current treatments with doxycycline and rifampicin are not practical for widespread use due to the length of required treatments and contraindications, anti-Wolbachia targeting nevertheless appears a promising alternative for filariasis control in situations where current programmatic strategies fail or are unable to be delivered and it provides a superior efficacy for individual therapy. The mechanisms that underlie the symbiotic relationship between Wolbachia and its nematode hosts remain elusive. Comparative genomics, bioinfomatic and experimental analyses have identified a number of potential interactions, which may be drug targets. One candidate is de novo heme biosynthesis, due to its absence in the genome sequence of the host nematode, Brugia malayi, but presence in Wolbachia and its potential roles in worm biology. We describe this and several additional candidate targets, as well as our approaches for understanding the nature of the host-symbiont relationship
Evaluation of Multidrug Efflux Pump Inhibitors by a New Method Using Microfluidic Channels
Fluorescein-di-β-d-galactopyranoside (FDG), a fluorogenic compound, is hydrolyzed by β-galactosidase in the cytoplasm of Escherichia coli to produce a fluorescent dye, fluorescein. We found that both FDG and fluorescein were substrates of efflux pumps, and have developed a new method to evaluate efflux-inhibitory activities in E. coli using FDG and a microfluidic channel device. We used E. coli MG1655 wild-type, ΔacrB (ΔB), ΔtolC (ΔC) and ΔacrBΔtolC (ΔBC) harboring plasmids carrying the mexAB-oprM (pABM) or mexXY-oprM (pXYM) genes of Pseudomonas aeruginosa. Two inhibitors, MexB-specific pyridopyrimidine (D13-9001) and non-specific Phe-Arg-β-naphthylamide (PAβN) were evaluated. The effects of inhibitors on pumps were observed using the microfluidic channel device under a fluorescence microscope. AcrAB-TolC and analogous pumps effectively prevented FDG influx in wild-type cells, resulting in no fluorescence. In contrast, ΔB or ΔC easily imported and hydrolyzed FDG to fluorescein, which was exported by residual pumps in ΔB. Consequently, fluorescent medium in ΔB and fluorescent cells of ΔC and ΔBC were observed in the microfluidic channels. D13-9001 substantially increased fluorescent cell number in ΔBC/pABM but not in ΔBC/pXYM. PAβN increased medium fluorescence in all strains, especially in the pump deletion mutants, and caused fluorescein accumulation to disappear in ΔC. The checkerboard method revealed that D13-9001 acts synergistically with aztreonam, ciprofloxacin, and erythromycin only against the MexAB-OprM producer (ΔBC/pABM), and PAβN acts synergistically, especially with erythromycin, in all strains including the pump deletion mutants. The results obtained from PAβN were similar to the results from membrane permeabilizer, polymyxin B or polymyxin B nonapeptide by concentration. The new method clarified that D13-9001 specifically inhibited MexAB-OprM in contrast to PAβN, which appeared to be a substrate of the pumps and permeabilized the membranes in E. coli
Mucoidy, Quorum Sensing, Mismatch Repair and Antibiotic Resistance in Pseudomonas aeruginosa from Cystic Fibrosis Chronic Airways Infections
Survival of Pseudomonas aeruginosa in cystic fibrosis (CF) chronic infections is based on a genetic adaptation process consisting of mutations in specific genes, which can produce advantageous phenotypic switches and ensure its persistence in the lung. Among these, mutations inactivating the regulators MucA (alginate biosynthesis), LasR (quorum sensing) and MexZ (multidrug-efflux pump MexXY) are the most frequently observed, with those inactivating the DNA mismatch repair system (MRS) being also highly prevalent in P. aeruginosa CF isolates, leading to hypermutator phenotypes that could contribute to this adaptive mutagenesis by virtue of an increased mutation rate. Here, we characterized the mutations found in the mucA, lasR, mexZ and MRS genes in P. aeruginosa isolates obtained from Argentinean CF patients, and analyzed the potential association of mucA, lasR and mexZ mutagenesis with MRS-deficiency and antibiotic resistance. Thus, 38 isolates from 26 chronically infected CF patients were characterized for their phenotypic traits, PFGE genotypic patterns, mutations in the mucA, lasR, mexZ, mutS and mutL gene coding sequences and antibiotic resistance profiles. The most frequently mutated gene was mexZ (79%), followed by mucA (63%) and lasR (39%) as well as a high prevalence (42%) of hypermutators being observed due to loss-of-function mutations in mutL (60%) followed by mutS (40%). Interestingly, mutational spectra were particular to each gene, suggesting that several mechanisms are responsible for mutations during chronic infection. However, no link could be established between hypermutability and mutagenesis in mucA, lasR and mexZ, indicating that MRS-deficiency was not involved in the acquisition of these mutations. Finally, although inactivation of mucA, lasR and mexZ has been previously shown to confer resistance/tolerance to antibiotics, only mutations in MRS genes could be related to an antibiotic resistance increase. These results help to unravel the mutational dynamics that lead to the adaptation of P. aeruginosa to the CF lung
Hochwasserschutzmassnahmen am Oberrhein im Raum Breisach zur Pruefung der Umweltvertraeglichkeit Auswirkungen von Hochwassern ausserhalb der Vegetationsperiode auf Standort, Vegetation, Fauna und Landschaftsbild
Available from TIB Hannover: FR 2816(Erg) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
