4,855 research outputs found
Clinical and functional characterisation of a novel TNFRSF1A c.605T > A/V173D cleavage site mutation associated with tumour necrosis factor receptor-associated periodic fever syndrome (TRAPS), cardiovascular complications and excellent response to etanercept treatment.
Objectives: To study the clinical outcome, treatment
response, T-cell subsets and functional consequences of a
novel tumour necrosis factor (TNF) receptor type 1
(TNFRSF1A) mutation affecting the receptor
cleavage site.
Methods: Patients with symptoms suggestive of tumour
necrosis factor receptor-associated periodic syndrome
(TRAPS) and 22 healthy controls (HC) were screened for
mutations in the TNFRSF1A gene. Soluble TNFRSF1A and
inflammatory cytokines were measured by ELISAs.
TNFRSF1A shedding was examined by stimulation of
peripheral blood mononuclear cells (PBMCs) with phorbol
12-myristate 13-acetate followed by flow cytometric
analysis (FACS). Apoptosis of PBMCs was studied by
stimulation with TNFa in the presence of cycloheximide
and annexin V staining. T cell phenotypes were monitored
by FACS.
Results: TNFRSF1A sequencing disclosed a novel V173D/
p.Val202Asp substitution encoded by exon 6 in one
family, the c.194–14G.A splice variant in another and
the R92Q/p.Arg121Gln substitution in two families.
Cardiovascular complications (lethal heart attack and
peripheral arterial thrombosis) developed in two V173D
patients. Subsequent etanercept treatment of the V173D
carriers was highly effective over an 18-month follow-up
period. Serum TNFRSF1A levels did not differ between
TRAPS patients and HC, while TNFRSF1A cleavage from
monocytes was significantly reduced in V173D and R92Q
patients. TNFa-induced apoptosis of PBMCs and T-cell
senescence were comparable between V173D patients
and HC.
Conclusions: The TNFRSF1A V173D cleavage site
mutation may be associated with an increased risk for
cardiovascular complications and shows a strong
response to etanercept. T-cell senescence does not seem
to have a pathogenetic role in affected patients
A framework for space-efficient string kernels
String kernels are typically used to compare genome-scale sequences whose
length makes alignment impractical, yet their computation is based on data
structures that are either space-inefficient, or incur large slowdowns. We show
that a number of exact string kernels, like the -mer kernel, the substrings
kernels, a number of length-weighted kernels, the minimal absent words kernel,
and kernels with Markovian corrections, can all be computed in time and
in bits of space in addition to the input, using just a
data structure on the Burrows-Wheeler transform of the
input strings, which takes time per element in its output. The same
bounds hold for a number of measures of compositional complexity based on
multiple value of , like the -mer profile and the -th order empirical
entropy, and for calibrating the value of using the data
Compton Scattering in Ultra-Strong Magnetic Fields: Numerical and Analytical Behavior in the Relativistic Regime
This paper explores the effects of strong magnetic fields on the Compton
scattering of relativistic electrons. Recent studies of upscattering and energy
loss by relativistic electrons that have used the non-relativistic, magnetic
Thomson cross section for resonant scattering or the Klein-Nishina cross
section for non-resonant scattering do not account for the relativistic quantum
effects of strong fields ( G). We have derived a
simplified expression for the exact QED scattering cross section for the
broadly-applicable case where relativistic electrons move along the magnetic
field. To facilitate applications to astrophysical models, we have also
developed compact approximate expressions for both the differential and total
polarization-dependent cross sections, with the latter representing well the
exact total QED cross section even at the high fields believed to be present in
environments near the stellar surfaces of Soft Gamma-Ray Repeaters and
Anomalous X-Ray Pulsars. We find that strong magnetic fields significantly
lower the Compton scattering cross section below and at the resonance, when the
incident photon energy exceeds in the electron rest frame. The cross
section is strongly dependent on the polarization of the final scattered
photon. Below the cyclotron fundamental, mostly photons of perpendicular
polarization are produced in scatterings, a situation that also arises above
this resonance for sub-critical fields. However, an interesting discovery is
that for super-critical fields, a preponderance of photons of parallel
polarization results from scatterings above the cyclotron fundamental. This
characteristic is both a relativistic and magnetic effect not present in the
Thomson or Klein-Nishina limits.Comment: AASTeX format, 31 pages included 7 embedded figures, accepted for
publication in The Astrophysical Journa
Strigolactones suppress adventitious rooting in Arabidopsis and pea
Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation
Biological and technical variables affecting immunoassay recovery of cytokines from human serum and simulated vaginal fluid: A multicenter study
The increase of proinflammatory cytokines in vaginal secretions may serve as a surrogate marker of unwanted inflammatory reaction to microbicide products topically applied for the prevention of sexually transmitted diseases, including HIV-1. Interleukin (IL)-1β and IL-6 have been proposed as indicators of inflammation and increased risk of HIV-1 transmission; however, the lack of information regarding detection platforms optimal for vaginal fluids and interlaboratory variation limit their use for microbicide evaluation and other clinical applications. This study examines fluid matrix variants relevant to vaginal sampling techniques and proposes a model for interlaboratory comparisons across current cytokine detection technologies. IL-1β and IL-6 standards were measured by 12 laboratories in four countries, using 14 immunoassays and four detection platforms based on absorbance, chemiluminescence, electrochemiluminescence, and fluorescence. International reference preparations of cytokines with defined biological activity were spiked into (1) a defined medium simulating the composition of human vaginal fluid at pH 4.5 and 7.2, (2) physiologic salt solutions (phosphate-buffered saline and saline) commonly used for vaginal lavage sampling in clinical studies of cytokines, and (3) human blood serum. Assays were assessed for reproducibility, linearity, accuracy, and significantly detectable fold difference in cytokine level. Factors with significant impact on cytokine recovery were determined by Kruskal−Wallis analysis of variance with Dunn’s multiple comparison test and multiple regression models. All assays showed acceptable intra-assay reproducibility; however, most were associated with significant interlaboratory variation. The smallest reliably detectable cytokine differences (P < 0.05) derived from pooled interlaboratory data varied from 1.5- to 26-fold depending on assay, cytokine, and matrix type. IL-6 but not IL-1β determinations were lower in both saline and phosphate-buffered saline as compared to vaginal fluid matrix, with no significant effect of pH. The (electro)chemiluminescence-based assays were most discriminative and consistently detected <2-fold differences within each matrix type. The Luminex-based assays were less discriminative with lower reproducibility between laboratories. These results suggest the need for uniform vaginal sampling techniques and a better understanding of immunoassay platform differences and cross-validation before the biological significance of cytokine variations can be validated in clinical trials. This investigation provides the first standardized analytic approach for assessing differences in mucosal cytokine levels and may improve strategies for monitoring immune responses at the vaginal mucosal interface
Hydrogen Phases on the Surface of a Strongly Magnetized Neutron Star
The outermost layers of some neutron stars are likely to be dominated by
hydrogen, as a result of fast gravitational settling of heavier elements. These
layers directly mediate thermal radiation from the stars, and determine the
characteristics of X-ray/EUV spectra. For a neutron star with surface
temperature T\lo 10^6 K and magnetic field B\go 10^{12} G, various forms of
hydrogen can be present in the envelope, including atom, poly-molecules, and
condensed metal. We study the physical properties of different hydrogen phases
on the surface of a strongly magnetized neutron star for a wide range of field
strength and surface temperature . Depending on the values of and
, the outer envelope can be either in a nondegenerate gaseous phase or in a
degenerate metallic phase. For T\go 10^5 K and moderately strong magnetic
field, B\lo 10^{13} G, the envelope is nondegenerate and the surface material
gradually transforms into a degenerate Coulomb plasma as density increases. For
higher field strength, G, there exists a first-order phase
transition from the nondegenerate gaseous phase to the condensed metallic
phase. The column density of saturated vapor above the metallic hydrogen
decreases rapidly as the magnetic field increases or/and temperature decreases.
Thus the thermal radiation can directly emerge from the degenerate metallic
hydrogen surface. The characteristics of surface X-ray/EUV emission for
different phases are discussed. A separate study concerning the possibility of
magnetic field induced nuclear fusion of hydrogen on the neutron star surface
is also presented.Comment: TeX, 35 pages including 6 postscript figures. To be published in Ap
New, high statistics measurement of the K+ -> pi0 e+ nu (Ke3) branching ratio
E865 at the Brookhaven National Laboratory AGS collected about 70,000 K+(e3)
events with the purpose of measuring the relative K+(e3) branching ratio. The
pi0 in all the decays was detected using the e+e- pair from pi0 -> e+e-gamma
decay and no photons were required. Using the Particle Data Group branching
ratios for the normalization decays we obtain
BR(K+(e3(gamma))=(5.13+/-0.02(stat)+/-0.09(sys)+/-0.04(norm))%, where
V_{us}$ element of the CKM matrix, and the matrix's
unitarity are discussed.Comment: 4 pages, 5 figures; final version accepted by PR
EXTRACTION OF RAILROAD OBJECTS FROM VERY HIGH RESOLUTION HELICOPTER-BORNE LIDAR AND ORTHO-IMAGE DATA
LiDAR (Light Detection and Ranging) sensors and digital aerial camera systems using a slow and low flying aircraft provide a new quality of data for a variety of promising large-scale applications. The main of this study objective is the development of methods for the automated object extraction of railway infrastructure from combined helicopter-based extremely dense laser scanner measurement points and very high resolution digital ortho-imagery. Thus, different existing methods from digital image processing, image segmentation and object recognition have been compared regarding their performance, output quality and level of automation. It turned out that all existing methods are not suitable to meet the requirements (geometrical accuracy of the result, amount of data to be processed etc.). Since original LiDAR point data provides a higher accuracy than derived DTM raster data or ortho-imagery new suited methods for the object extraction from point clouds have been developed. For the extraction of linear features, such as rails and catenaries, two new methods were implemented. The first method sets up on pre-classified laser points as input data. Therefore the RANSAC algorithm was implemented successfully to extract linear objects within the environment of MATLAB and ArcGIS. Second, a knowledge-based classification method was designed to compare a reference profile with the situation along the track using IDL. The results show new prospects to automatically extract railroad objects with a high geometrical accuracy from extremely dense LiDAR data without using aerial imagery. The decision not to use image data was especially caused by the enormous data amount t
- …
