161 research outputs found

    Prostaglandin profiling reveals a role for haematopoietic prostaglandin D synthase in adipose tissue macrophage polarisation in mice and humans.

    Get PDF
    BACKGROUND/OBJECTIVES: Obesity has been associated with both changes in adipose tissue lipid metabolism and inflammation. A key class of lipid-derived signalling molecules involved in inflammation are the prostaglandins. In this study, we aimed to determine how obesity affects the levels of prostaglandins within white adipose tissue (WAT) and determine which cells within adipose tissue produce them. To avoid the effects of cellular stress on prostaglandin levels, we developed a multivariate statistical approach in which metabolite concentrations and transcriptomic data were integrated, allowing the assignment of metabolites to cell types. SUBJECTS/METHODS: Eicosanoids were measured by liquid chromatography-tandem mass spectrometry and mRNA levels using real-time PCR. Eicosanoid levels and transcriptomic data were combined using principal component analysis and hierarchical clustering in order to associate metabolites with cell types. Samples were obtained from C57Bl/6 mice aged 16 weeks. We studied the ob/ob genetically obese mouse model and diet-induced obesity model. We extended our results in mice to a cohort of morbidly obese humans undergoing bariatric surgery. RESULTS: Using our modelling approach, we determined that prostglandin D₂ (PGD₂) in adipose tissue was predominantly produced in macrophages by the haematopoietic isoform of prostaglandin D synthase (H-Pgds). Analysis of sub-fractionated WAT confirmed that H-Pgds was expressed in adipose tissue macrophages (ATMs). Furthermore, H-Pgds expression in ATMs isolated from lean and obese mice was consistent with it affecting macrophage polarisation. Functionally, we demonstrated that H-PGDS-produced PGD₂ polarised macrophages toward an M2, anti-inflammatory state. In line with a potential anti-inflammatory role, we found that H-PGDS expression in ATMs was positively correlated with both peripheral insulin and adipose tissue insulin sensitivity in humans. CONCLUSIONS: In this study, we have developed a method to determine the cellular source of metabolites within an organ and used it to identify a new role for PGD₂ in the control of ATM polarisation.HQL-79 was a kind gift of Professor Yoshihiro Urade. Professor Vidal-Puig was funded by the BHF, MRC and BBSRC. Dr Virtue was funded by the BBSRC and the BHF. Dr Eiden, Dr Masoodi and Dr Griffin were funded by the MRC. Dr Mok was funded by the Wellcome Trust.This is the final published version. It first appeared at http://www.nature.com/ijo/journal/vaop/ncurrent/full/ijo201534a.htm

    Insulin Resistance and Altered Systemic Glucose Metabolism in Mice Lacking Nur77

    Get PDF
    OBJECTIVE: Nur77 is an orphan nuclear receptor with pleotropic functions. Previous studies have identified Nur77 as a transcriptional regulator of glucose utilization genes in skeletal muscle and gluconeogenesis in liver. However, the net functional impact of these pathways is unknown. To examine the consequence of Nur77 signaling for glucose metabolism in vivo, we challenged Nur77 null mice with high-fat feeding. RESEARCH DESIGN AND METHODS: Wild-type and Nur77 null mice were fed a high-fat diet (60% calories from fat) for 3 months. We determined glucose tolerance, tissue-specific insulin sensitivity, oxygen consumption, muscle and liver lipid content, muscle insulin signaling, and expression of glucose and lipid metabolism genes. RESULTS: Mice with genetic deletion of Nur77 exhibited increased susceptibility to diet-induced obesity and insulin resistance. Hyperinsulinemic-euglycemic clamp studies revealed greater high-fat diet–induced insulin resistance in both skeletal muscle and liver of Nur77 null mice compared with controls. Loss of Nur77 expression in skeletal muscle impaired insulin signaling and markedly reduced GLUT4 protein expression. Muscles lacking Nur77 also exhibited increased triglyceride content and accumulation of multiple even-chained acylcarnitine species. In the liver, Nur77 deletion led to hepatic steatosis and enhanced expression of lipogenic genes, likely reflecting the lipogenic effect of hyperinsulinemia. CONCLUSIONS: Collectively, these data demonstrate that loss of Nur77 influences systemic glucose metabolism and highlight the physiological contribution of muscle Nur77 to this regulatory pathway.National Institutes of Health (HD-00850, DK-081683-01, DK-30425, HL030568); American Diabetes Associatio

    A statistical framework to evaluate virtual screening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Receiver operating characteristic (ROC) curve is widely used to evaluate virtual screening (VS) studies. However, the method fails to address the "early recognition" problem specific to VS. Although many other metrics, such as RIE, BEDROC, and pROC that emphasize "early recognition" have been proposed, there are no rigorous statistical guidelines for determining the thresholds and performing significance tests. Also no comparisons have been made between these metrics under a statistical framework to better understand their performances.</p> <p>Results</p> <p>We have proposed a statistical framework to evaluate VS studies by which the threshold to determine whether a ranking method is better than random ranking can be derived by bootstrap simulations and 2 ranking methods can be compared by permutation test. We found that different metrics emphasize "early recognition" differently. BEDROC and RIE are 2 statistically equivalent metrics. Our newly proposed metric SLR is superior to pROC. Through extensive simulations, we observed a "seesaw effect" – overemphasizing early recognition reduces the statistical power of a metric to detect true early recognitions.</p> <p>Conclusion</p> <p>The statistical framework developed and tested by us is applicable to any other metric as well, even if their exact distribution is unknown. Under this framework, a threshold can be easily selected according to a pre-specified type I error rate and statistical comparisons between 2 ranking methods becomes possible. The theoretical null distribution of SLR metric is available so that the threshold of SLR can be exactly determined without resorting to bootstrap simulations, which makes it easy to use in practical virtual screening studies.</p

    Regulation of Chemokine and Chemokine Receptor Expression by PPARγ in Adipocytes and Macrophages

    Get PDF
    PPARγ plays a key role in adipocyte biology, and Rosiglitazone (Rosi), a thiazolidinedione (TZD)/PPARγ agonist, is a potent insulin-sensitizing agent. Recent evidences demonstrate that adipose tissue inflammation links obesity with insulin resistance and that the insulin-sensitizing effects of TZDs result, in part, from their anti-inflammatory properties. However the underlying mechanisms are unclear.In this study, we establish a link between free fatty acids (FFAs) and PPARγ in the context of obesity-associated inflammation. We show that treatment of adipocytes with FFAs, in particular Arachidonic Acid (ARA), downregulates PPARγ protein and mRNA levels. Furthermore, we demonstrate that the downregulation of PPARγ by ARA requires the activation the of Endoplamsic Reticulum (ER) stress by the TLR4 pathway. Knockdown of adipocyte PPARγ resulted in upregulation of MCP1 gene expression and secretion, leading to enhanced macrophage chemotaxis. Rosi inhibited these effects. In a high fat feeding mouse model, we show that Rosi treatment decreases recruitment of proinflammatory macrophages to epididymal fat. This correlates with decreased chemokine and decreased chemokine receptor expression in adipocytes and macrophages, respectively.In summary, we describe a novel link between FAs, the TLR4/ER stress pathway and PPARγ, and adipocyte-driven recruitment of macrophages. We thus both describe an additional potential mechanism for the anti-inflammatory and insulin-sensitizing actions of TZDs and an additional detrimental property associated with the activation of the TLR4 pathway by FA

    α-cell glucokinase suppresses glucose-regulated glucagon secretion

    Get PDF
    Glucagon secretion by pancreatic α-cells is triggered by hypoglycemia and suppressed by high glucose levels; impaired suppression of glucagon secretion is a hallmark of both type 1 and type 2 diabetes. Here, we show that α-cell glucokinase (Gck) plays a role in the control of glucagon secretion. Using mice with α-cell-specific inactivation of Gck (αGckKO mice), we find that glucokinase is required for the glucose-dependent increase in intracellular ATP/ADP ratio and the closure of K javax.xml.bind.JAXBElement@dee6e8 channels in α-cells and the suppression of glucagon secretion at euglycemic and hyperglycemic levels. αGckKO mice display hyperglucagonemia in the fed state, which is associated with increased hepatic gluconeogenic gene expression and hepatic glucose output capacity. In adult mice, fed hyperglucagonemia is further increased and glucose intolerance develops. Thus, glucokinase governs an α-cell metabolic pathway that suppresses secretion at or above normoglycemic levels; abnormal suppression of glucagon secretion deregulates hepatic glucose metabolism and, over time, induces a pre-diabetic phenotype

    VDA, a Method of Choosing a Better Algorithm with Fewer Validations

    Get PDF
    The multitude of bioinformatics algorithms designed for performing a particular computational task presents end-users with the problem of selecting the most appropriate computational tool for analyzing their biological data. The choice of the best available method is often based on expensive experimental validation of the results. We propose an approach to design validation sets for method comparison and performance assessment that are effective in terms of cost and discrimination power

    Variants in the FFAR1 Gene Are Associated with Beta Cell Function

    Get PDF
    The FFAR1 receptor is expressed mainly in pancreatic beta cells and is activated by medium to long chain free fatty acids (FFAs), as well as by thiazolidinediones, resulting in elevated Ca(2+) concentrations and promotion of insulin secretion. These properties suggest that FFAR1 could be a mediator of lipotoxicity and a potential candidate gene for Type 2 diabetes (T2D). We therefore investigated whether variations at the FFAR1 locus are associated with T2D and beta cell function.We re-sequenced the FFAR1 region in 96 subjects (48 healthy and 48 T2D individuals) and found 13 single nucleotide polymorphisms (SNPs) 8 of which were not previously described. Two SNPs located in the upstream region of the FFAR1 gene (rs1978013 and rs1978014) were chosen and genotyped in 1929 patients with T2D and 1405 healthy control subjects. We observed an association of rs1978013 and rs1978014 with insulinogenic index in males (p = 0.024) and females (p = 0.032), respectively. After Bonferroni corrections, no association with T2D was found in the case-control material, however a haplotype consisting of the T-G alleles conferred protection against T2D (p = 0.0010).Variation in the FFAR1 gene may contribute to impaired beta cell function in T2D
    corecore