60 research outputs found

    Comparative analysis of IL6 and IL6 receptor gene polymorphisms in mastocytosis

    Get PDF
    Mastocytosis is a rare disease with reported high interleukin-6 (IL6) levels influencing disease severity. The present study investigated polymorphisms within the genes that encode IL6 and its receptor (IL6R) in relation to mastocytosis development in a case-control design. Analysis of the IL6R Asp358Ala polymorphism showed that carriers of the AA genotype had a 2.5-fold lower risk for mastocytosis than those with the AC or CC genotypes. No association with mastocytosis was found for the IL6-174G/C polymorphism, however, it may influence the effect of IL6R polymorphism. To the best of our knowledge this is the first study analysing IL6/IL6R polymorphisms in mastocytosis

    EFFECT OF FERTILIZERS ON THE YIELD, PROTEIN CONTENT AND AMINO ACID COMPOSITION OF WINTER CEREALS

    Get PDF
    The effect of different fertilizers (nitrogen, phosphorus, potassium) and their combinations on the yield, raw protein content and amino acid composition were studied in field experiments. The levels of treatment were 200 kg/ha for nitrogen, 500-1000 kg/ha for phosphorus and potassium. Winter rye, triticale and wheat cultivar were grown in two subsequent years. Nitrogen fertilization in all cases increased the yield of grains and the raw protein content. The increase reached about 50% in average comparing with control samples grown without adding nitrogen fertilizers. Although there are significant differences between the different cereals studied, it can be generally stated that the increase in protein content is connected with a decrease in the essential to non-essential amino acid ratio. The decrease is higher if only nitrogen fertilizer is used and moderate if a combined treatment with nitrogen, phosphorus and potassium fertilizer is applied

    Production Test Rig for the ATLAS Level-1 Calorimeter Trigger Digital Processors

    Get PDF
    The Level-1 Calorimeter Trigger is a digital pipelined system, reducing the 40 MHz bunch-crossing rate down to 75 kHz. It consists of a Preprocessor, a Cluster Processor (CP), and a Jet/Energy-sum Processor (JEP). The CP and JEP receive digitised trigger-tower data from the Preprocessor and produce electron/photon, tau, and jet trigger multiplicities, total and missing transverse energies, and Region-of-Interest (RoI) information. Data are read out to the data acquisition (DAQ) system to monitor the trigger by using readout driver modules (ROD). A dedicated backplane has been designed to cope with the demanding requirements of the CP and JEP sub-systems. A number of pre-production boards were manufactured in order to fully populate a crate and test the robustness of the design on a large scale. Dedicated test modules to emulate digitised calorimeter signals have been used. All modules, cables and backplanes on test are final versions for use at the LHC. This test rig represents up to one third of the Level-1 digital processor system. Real-time data between modules were processed and time-slice readout data was transferred to the ROD at a trigger rate up to 100 kHz. Intensive testing consisted of checking the readout data by comparing to hardware simulations of the trigger. Domains of validity of the boards were also measured and dedicated stressful data patterns were used to check the reliability of the system. Tests results have been successful and the Level-1 calorimeter trigger system is proceeding to full production

    The ATLAS Trigger/DAQ Authorlist, version 3.1

    Get PDF
    This is the ATLAS Trigger/DAQ Authorlist, version 3.1, 17 September 200

    The ATLAS Trigger/DAQ Authorlist, version 2.0

    Get PDF
    This is the ATLAS Trigger/DAQ Authorlist, version 2.0, 31 July 200

    The ATLAS Trigger/DAQ Authorlist, version 1.0

    Get PDF
    This is a reference document giving the ATLAS Trigger/DAQ author list, version 1.0 of 20 Nov 2008

    The ATLAS Trigger/DAQ Authorlist, version 3.0

    Get PDF
    This is the ATLAS Trigger/DAQ Authorlist, version 3.0, 11 September 200
    corecore