3,820 research outputs found
Ion transport through confined ion channels in the presence of immobile charges
We study charge transport in an ionic solution in a confined nanoscale
geometry in the presence of an externally applied electric field and immobile
background charges. For a range of parameters, the ion current shows
non-monotonic behavior as a function of the external ion concentration. For
small applied electric field, the ion transport can be understood from simple
analytic arguments, which are supported by Monte Carlo simulation. The results
qualitatively explain measurements of ion current seen in a recent experiment
on ion transport through a DNA-threaded nanopore (D. J. Bonthuis et. al., Phys.
Rev. Lett, vol. 97, 128104 (2006)).Comment: 5 pages, 3 figure
On the Physics of Size Selectivity
We demonstrate that two mechanisms used by biological ion channels to select
particles by size are driven by entropy. With uncharged particles in an
infinite cylinder, we show that a channel that attracts particles is
small-particle selective and that a channel that repels water from the wall is
large-particle selective. Comparing against extensive density-functional theory
calculations of our model, we find that the main physics can be understood with
surprisingly simple bulk models that neglect the confining geometry of the
channel completely.Comment: 4 pages, 3 figures, Phys. Rev. Lett. (accepted
Voltage sensing in ion channels: Mesoscale simulations of biological devices
Electrical signaling via voltage-gated ion channels depends upon the function
of a voltage sensor (VS), identified with the S1-S4 domain in voltage-gated K+
channels. Here we investigate some energetic aspects of the sliding-helix model
of the VS using simulations based on VS charges, linear dielectrics and
whole-body motion. Model electrostatics in voltage-clamped boundary conditions
are solved using a boundary element method. The statistical mechanical
consequences of the electrostatic configurational energy are computed to gain
insight into the sliding-helix mechanism and to predict experimentally measured
ensemble properties such as gating charge displaced by an applied voltage.
Those consequences and ensemble properties are investigated for two alternate
S4 configurations, \alpha- and 3(10)-helical. Both forms of VS are found to
have an inherent electrostatic stability. Maximal charge displacement is
limited by geometry, specifically the range of movement where S4 charges and
counter-charges overlap in the region of weak dielectric. Charge displacement
responds more steeply to voltage in the \alpha-helical than the 3(10)-helical
sensor. This difference is due to differences on the order of 0.1 eV in the
landscapes of electrostatic energy. As a step toward integrating these VS
models into a full-channel model, we include a hypothetical external load in
the Hamiltonian of the system and analyze the energetic in/output relation of
the VS.Comment: arXiv admin note: substantial text overlap with arXiv:1112.299
Entropic transport - A test bed for the Fick-Jacobs approximation
Biased diffusive transport of Brownian particles through irregularly shaped,
narrow confining quasi-one-dimensional structures is investigated. The
complexity of the higher dimensional diffusive dynamics is reduced by means of
the so-called Fick-Jacobs approximation, yielding an effective one-dimensional
stochastic dynamics. Accordingly, the elimination of transverse, equilibrated
degrees of freedom stemming from geometrical confinements and/or bottlenecks
cause entropic potential barriers which the particles have to overcome when
moving forward noisily. The applicability and the validity of the reduced
kinetic description is tested by comparing the approximation with Brownian
dynamics simulations in full configuration space. This non-equilibrium
transport in such quasi-one-dimensional irregular structures implies for
moderate-to-strong bias a characteristic violation of the Sutherland-Einstein
fluctuation-dissipation relation.Comment: 15 pages, 6 figures ; Phil. Trans. R. Soc. A (2009), in pres
Effect of Interactions on Molecular Fluxes and Fluctuations in the Transport Across Membrane Channels
Transport of molecules across membrane channels is investigated theoretically
using exactly solvable one-dimensional discrete-state stochastic models. An
interaction between molecules and membrane pores is modeled via a set of
binding sites with different energies. It is shown that the interaction
potential strongly influences the particle currents as well as fluctuations in
the number of translocated molecules. For small concentration gradients the
attractive sites lead to largest currents and fluctuations, while the repulsive
interactions yield the largest fluxes and dispersions for large concentration
gradients. Interaction energies that lead to maximal currents and maximal
fluctuations are the same only for locally symmetric potentials, while they
differ for the locally asymmetric potentials. The conditions for the most
optimal translocation transport with maximal current and minimal dispersion are
discussed. It is argued that in this case the interaction strength is
independent of local symmetry of the potential of mean forces. In addition, the
effect of the global asymmetry of the interaction potential is investigated,
and it is shown that it also strongly affects the particle translocation
dynamics. These phenomena can be explained by analyzing the details of the
particle entering and leaving the binding sites in the channel.Comment: submitted to J. Chem. Phy
Optimization of the leak conductance in the squid giant axon
We report on a theoretical study showing that the leak conductance density,
\GL, in the squid giant axon appears to be optimal for the action potential
firing frequency. More precisely, the standard assumption that the leak current
is composed of chloride ions leads to the result that the experimental value
for \GL is very close to the optimal value in the Hodgkin-Huxley model which
minimizes the absolute refractory period of the action potential, thereby
maximizing the maximum firing frequency under stimulation by sharp, brief input
current spikes to one end of the axon. The measured value of \GL also appears
to be close to optimal for the frequency of repetitive firing caused by a
constant current input to one end of the axon, especially when temperature
variations are taken into account. If, by contrast, the leak current is assumed
to be composed of separate voltage-independent sodium and potassium currents,
then these optimizations are not observed.Comment: 9 pages; 9 figures; accepted for publication in Physical Review
Ab initio molecular dynamics calculations of ion hydration free energies
We apply ab initio molecular dynamics (AIMD) methods in conjunction with the
thermodynamic integration or "lambda-path" technique to compute the intrinsic
hydration free energies of Li+, Cl-, and Ag+ ions. Using the
Perdew-Burke-Ernzerhof functional, adapting methods developed for classical
force field applications, and with consistent assumptions about surface
potential (phi) contributions, we obtain absolute AIMD hydration free energies
(Delta G(hyd)) within a few kcal/mol, or better than 4%, of Tissandier 's [J.
Phys. Chem. A 102, 7787 (1998)] experimental values augmented with the SPC/E
water model phi predictions. The sums of Li+/Cl- and Ag+/Cl- AIMD Delta G(hyd),
which are not affected by surface potentials, are within 2.6% and 1.2 % of
experimental values, respectively. We also report the free energy changes
associated with the transition metal ion redox reaction Ag++Ni+-> Ag+Ni2+ in
water. The predictions for this reaction suggest that existing estimates of
Delta G(hyd) for unstable radiolysis intermediates such as Ni+ may need to be
extensively revised.Comment: 18 pages, 8 figures. This version is essentially the one published in
J. Chem. Phy
Ion-channel-like behavior in lipid bilayer membranes at the melting transition
It is well known that at the gel-liquid phase transition temperature a lipid
bilayer membrane exhibits an increased ion permeability. We analyze the
quantized currents in which the increased permeability presents itself. The
open time histogram shows a "-3/2" power law which implies an open-closed
transition rate that decreases like as time evolves. We
propose a "pore freezing" model to explain the observations. We discuss how
this model also leads to the noise that is commonly observed in
currents across biological and artificial membranes.Comment: 5 pages, 4 figure
Asymmetry in shape causing absolute negative mobility
We propose a simple classical concept of nanodevices working in an absolute
negative mobility (ANM) regime: The minimal spatial asymmetry required for ANM
to occur is embedded in the geometry of the transported particle, rather than
in the channel design. This allows for a tremendous simplification of device
engineering, thus paving the way towards practical implementations of ANM.
Operating conditions and performance of our model device are investigated, both
numerically and analytically.Comment: 6 pages; accepted for publication in PR
Unidirectional hopping transport of interacting particles on a finite chain
Particle transport through an open, discrete 1-D channel against a mechanical
or chemical bias is analyzed within a master equation approach. The channel,
externally driven by time dependent site energies, allows multiple occupation
due to the coupling to reservoirs. Performance criteria and optimization of
active transport in a two-site channel are discussed as a function of reservoir
chemical potentials, the load potential, interparticle interaction strength,
driving mode and driving period. Our results, derived from exact rate
equations, are used in addition to test a previously developed time-dependent
density functional theory, suggesting a wider applicability of that method in
investigations of many particle systems far from equilibrium.Comment: 33 pages, 8 figure
- …
