515 research outputs found
Euler-Lagrange equations for composition functionals in calculus of variations on time scales
In this paper we consider the problem of the calculus of variations for a
functional which is the composition of a certain scalar function with the
delta integral of a vector valued field , i.e., of the form
. Euler-Lagrange
equations, natural boundary conditions for such problems as well as a necessary
optimality condition for isoperimetric problems, on a general time scale, are
given. A number of corollaries are obtained, and several examples illustrating
the new results are discussed in detail.Comment: Submitted 10-May-2009 to Discrete and Continuous Dynamical Systems
(DCDS-B); revised 10-March-2010; accepted 04-July-201
TEMPERATURE AND LEVEL DENSITY PARAMETER OF EVAPORATION RESIDUES PRODUCED IN THE REACTION 165Ho + 600 MeV 20Ne
Evaporative and preequilibrium neutrons emitted from evaporation residues in the reaction Ho + 600 MeV neon are exploited to deduce the thermal excitation energy E* and temperature T of the residues. From these quantities the level density parameter is deduced at a temperature of 4.1 MeV
Nuclear multifragmentation and fission: similarity and differences
Thermal multifragmentation of hot nuclei is interpreted as the nuclear
liquid--fog phase transition deep inside the spinodal region. The experimental
data for p(8.1GeV) + Au collisions are analyzed. It is concluded that the decay
process of hot nuclei is characterized by two size parameters: transition state
and freeze-out volumes. The similarity between dynamics of fragmentation and
ordinary fission is discussed. The IMF emission time is related to the mean
rupture time at the multi-scission point, which corresponds to the kinetic
freeze-out configuration.Comment: 7 pages, 3 Postscript figures, Proceedings of IWM 2005, Catani
A Femtosecond Neutron Source
The possibility to use the ultrashort ion bunches produced by circularly
polarized laser pulses to drive a source of fusion neutrons with sub-optical
cycle duration is discussed. A two-side irradiation of a thin foil deuterated
target produces two countermoving ion bunches, whose collision leads to an
ultrashort neutron burst. Using particle-in-cell simulations and analytical
modeling, it is evaluated that, for intensities of a few ,
more than neutrons per Joule may be produced within a time shorter than
one femtosecond. Another scheme based on a layered deuterium-tritium target is
outlined.Comment: 15 pages, 3 figure
Planar 17O NMR study of Pr_yY_{1-y}Ba_2Cu_3O_{6+x}
We report the planar ^{17}O NMR shift in Pr substituted YBa_{2}Cu_{3}O_{6+x},
which at x=1 exhibits a characteristic pseudogap temperature dependence,
confirming that Pr reduces the concentration of mobile holes in the CuO_{2}
planes. Our estimate of the rate of this counterdoping effect, obtained by
comparison with the shift in pure samples with reduced oxygen content, is found
insufficient to explain the observed reduction of T_c. From the temperature
dependent magnetic broadening of the ^{17}O NMR we conclude that the Pr moment
and the local magnetic defect induced in the CuO_2 planes produce a long range
spin polarization in the planes, which is likely associated with the extra
reduction of T_c. We find a qualitatively different behaviour in the oxygen
depleted Pr_yY_{1-y}Ba_2Cu_3O_{6.6}, i.e. the suppression of T is nearly
the same, but the magnetic broadening of the ^{17}O NMR appears weaker. This
difference may signal a weaker coupling of the Pr to the planes in the
underdoped compound, which might be linked with the larger Pr to CuO_2 plane
distance, and correspondingly weaker hybridization.Comment: 8 pages, 9 figures, accepted in Phys Rev
Comparative Analysis of the Mechanisms of Fast Light Particle Formation in Nucleus-Nucleus Collisions at Low and Intermediate Energies
The dynamics and the mechanisms of preequilibrium-light-particle formation in
nucleus-nucleus collisions at low and intermediate energies are studied on the
basis of a classical four-body model. The angular and energy distributions of
light particles from such processes are calculated. It is found that, at
energies below 50 MeV per nucleon, the hardest section of the energy spectrum
is formed owing to the acceleration of light particles from the target by the
mean field of the projectile nucleus. Good agreement with available
experimental data is obtained.Comment: 23 pages, 10 figures, LaTeX, published in Physics of Atomic Nuclei
v.65, No. 8, 2002, pp. 1459 - 1473 translated from Yadernaya Fizika v. 65,
No. 8, 2002, pp. 1494 - 150
Isospin influences on particle emission and critical phenomenon in nuclear dissociation
Features of particle emission and critical point behavior are investigated as
functions of the isospin of disassembling sources and temperature at a moderate
freeze-out density for medium-size Xe isotopes in the framework of isospin
dependent lattice gas model. Multiplicities of emitted light particles,
isotopic and isobaric ratios of light particles show the strong dependence on
the isospin of the dissociation source, but double ratios of light isotope
pairs and the critical temperature determined by the extreme values of some
critical observables are insensitive to the isospin of the systems. Values of
the power law parameter of cluster mass distribution, mean multiplicity of
intermediate mass fragments (), information entropy () and Campi's
second moment () also show a minor dependence on the isospin of Xe
isotopes at the critical point. In addition, the slopes of the average
multiplicites of the neutrons (), protons (), charged particles
(), and IMFs (), slopes of the largest fragment mass number
(), and the excitation energy per nucleon of the disassembling source
() to temperature are investigated as well as variances of the
distributions of , , , , and . It
is found that they can be taken as additional judgements to the critical
phenomena.Comment: 9 Pages, 8 figure
Effect of Non-Magnetic Impurities (Zn,Li) in a Hole Doped Spin-Fermion Model for Cuprates
The effect of adding non-magnetic impurities (NMI), such as Zn or Li, to
high-Tc cuprates is studied applying Monte Carlo techniques to a spin-fermion
model. It is observed that adding Li is qualitatively similar to doping with
equal percentages of Sr and Zn. The mobile holes (MH) are trapped by the NMI
and the system remains insulating and commensurate with antiferromagnetic (AF)
correlations. This behavior persists in the region %NMI > %MH. On the other
hand, when %NMI < %MH magnetic and charge incommensurabilities are observed.
The vertical or horizontal hole-rich stripes, present when % NMI=0 upon hole
doping, are pinned by the NMI and tend to become diagonal, surrounding finite
AF domains. The %MH-%NMI plane is investigated. Good agreement with
experimental results is found in the small portion of this diagram where
experimental data are available. Predictions about the expected behavior in the
remaining regions are made.Comment: Four pages with four figures embedded in tex
Fission-Residues Produced in the Spallation Reaction 238U+p at 1 A GeV
Fission fragments from 1 A GeV 238U projectiles irradiating a hydrogen target
were investigated by using the fragment separator FRS for magnetic selection of
reaction products including ray-tracing and DE-ToF techniques. The momentum
spectra of 733 identified fragments were analysed to provide isotopic
production cross sections, fission-fragment velocities and recoil momenta of
the fissioning parent nuclei. Besides their general relevance, these quantities
are also demanded for applications. Calculations and simulations with codes
commonly used and recently developed or improved are compared to the data.Comment: 60 pages, 21 figures, 4 tables, 2 appendices (15 pages
Isospin Physics in Heavy-Ion Collisions at Intermediate Energies
In nuclear collisions induced by stable or radioactive neutron-rich nuclei a
transient state of nuclear matter with an appreciable isospin asymmetry as well
as thermal and compressional excitation can be created. This offers the
possibility to study the properties of nuclear matter in the region between
symmetric nuclear matter and pure neutron matter. In this review, we discuss
recent theoretical studies of the equation of state of isospin-asymmetric
nuclear matter and its relations to the properties of neutron stars and
radioactive nuclei. Chemical and mechanical instabilities as well as the
liquid-gas phase transition in asymmetric nuclear matter are investigated. The
in-medium nucleon-nucleon cross sections at different isospin states are
reviewed as they affect significantly the dynamics of heavy ion collisions
induced by radioactive beams. We then discuss an isospin-dependent transport
model, which includes different mean-field potentials and cross sections for
the proton and neutron, and its application to these reactions. Furthermore, we
review the comparisons between theoretical predictions and available
experimental data. In particular, we discuss the study of nuclear stopping in
terms of isospin equilibration, the dependence of nuclear collective flow and
balance energy on the isospin-dependent nuclear equation of state and cross
sections, the isospin dependence of total nuclear reaction cross sections, and
the role of isospin in preequilibrium nucleon emissions and subthreshold pion
production.Comment: 101 pages with embedded epsf figures, review article for
"International Journal of Modern Physics E: Nuclear Physics". Send request
for a hard copy to 1/author
- …
