2,262 research outputs found
Split-rib reconstruction of the frontal sinus: two cases and literature review
Abstract Background: Large defects of the anterior wall of the frontal sinus require closure using either autologous or foreign material. In cases of osteomyelitis, the reconstruction must be resistant to bacterial infection. Split-rib osteoplasty can be used in different sites. Methods: Two patients with malignant sinonasal tumours underwent repeated treatment, and subsequently developed osteomyelitis of the frontal bone. After adequate therapy, a large defect of the anterior wall persisted. Reconstruction was performed using the split-rib method. The literature on this topic was reviewed. Results: Both patients' treatment were successful. No complications occurred. A PubMed search on the topic of rib reconstruction of the frontal sinus and skull was performed; 18 publications matched the inclusion criteria. From these sources, we noted that 182 reconstructions yielded good results with few complications. Conclusion: Large defects of the anterior wall of the frontal sinus can be closed successfully using autologous split-rib grafting. Aesthetic outcome is good and donor site morbidity is minima
Solitary fibrous tumor of the orbit—two cases and a review of the literature
Solitary fibrous tumors of the orbit (SFT) are mesenchymal lesions that can develop either as malignant or benign neoplasias. We describe the histological features leading to the diagnosis in two females and review the current literature. Diagnosis of SFT only can be performed by histological examination, since clinical signs and radiological features are not specific enough. Even a malignant or benign course cannot be predicted, since clinical and radiological features do not correlate with histological signs of malignancy and vice versa. Radical resection is the treatment of choice, since no other treatment option has been proven to be efficien
The effect of disorder on the critical temperature of a dilute hard sphere gas
We have performed Path Integral Monte Carlo (PIMC) calculations to determine
the effect of quenched disorder on the superfluid density of a dilute 3D hard
sphere gas. The disorder was introduced by locating set of hard cylinders
randomly inside the simulation cell. Our results indicate that the disorder
leaves the superfluid critical temperature basically unchanged. Comparison to
experiments of helium in Vycor is made.Comment: 4 pages, 4 figure
The density dependence of the transition temperature in a homogenous Bose flui
Transition temperature data obtained as a function of particle density in the
He-Vycor system are compared with recent theoretical calculations for 3D
Bose condensed systems. In the low density dilute Bose gas regime we find, in
agreement with theory, a positive shift in the transition temperature of the
form . At higher densities a maximum is
found in the ratio of for a value of the interaction parameter,
na, that is in agreement with path-integral Monte Carlo calculations.Comment: 4 pages, 3 figure
Pluto: A Monte Carlo Simulation Tool for Hadronic Physics
Pluto is a Monte-Carlo event generator designed for hadronic interactions
from Pion production threshold to intermediate energies of a few GeV per
nucleon, as well as for studies of heavy ion reactions. This report gives an
overview of the design of the package, the included models and the user
interface.Comment: XI International Workshop on Advanced Computing and Analysis
Techniques in Physics Research, April 23-27 2007, Amsterdam, the Netherland
Design of the Pluto Event Generator
We present the design of the simulation package Pluto, aimed at the study of
hadronic interactions at SIS and FAIR energies. Its main mission is to offer a
modular framework with an object-oriented structure, thereby making additions
such as new particles, decays of resonances, new models up to modules for
entire changes easily applicable. Overall consistency is ensured by a plugin-
and distribution manager. Particular features are the support of a modular
structure for physics process descriptions, and the possibility to access the
particle stream for on-line modifications. Additional configuration and
self-made classes can be attached by the user without re-compiling the package,
which makes Pluto extremely configurable.Comment: Presented at the 17th International Conference on Computing in High
Energy and Nuclear Physic
Design of the Pluto Event Generator
We present the design of the simulation package Pluto, aimed at the study of
hadronic interactions at SIS and FAIR energies. Its main mission is to offer a
modular framework with an object-oriented structure, thereby making additions
such as new particles, decays of resonances, new models up to modules for
entire changes easily applicable. Overall consistency is ensured by a plugin-
and distribution manager. Particular features are the support of a modular
structure for physics process descriptions, and the possibility to access the
particle stream for on-line modifications. Additional configuration and
self-made classes can be attached by the user without re-compiling the package,
which makes Pluto extremely configurable.Comment: Presented at the 17th International Conference on Computing in High
Energy and Nuclear Physic
Design of the Pluto Event Generator
We present the design of the simulation package Pluto, aimed at the study of
hadronic interactions at SIS and FAIR energies. Its main mission is to offer a
modular framework with an object-oriented structure, thereby making additions
such as new particles, decays of resonances, new models up to modules for
entire changes easily applicable. Overall consistency is ensured by a plugin-
and distribution manager. Particular features are the support of a modular
structure for physics process descriptions, and the possibility to access the
particle stream for on-line modifications. Additional configuration and
self-made classes can be attached by the user without re-compiling the package,
which makes Pluto extremely configurable.Comment: Presented at the 17th International Conference on Computing in High
Energy and Nuclear Physic
The transition temperature of the dilute interacting Bose gas
We show that the critical temperature of a uniform dilute Bose gas must
increase linearly with the s-wave scattering length describing the repulsion
between the particles. Because of infrared divergences, the magnitude of the
shift cannot be obtained from perturbation theory, even in the weak coupling
regime; rather, it is proportional to the size of the critical region in
momentum space. By means of a self-consistent calculation of the quasiparticle
spectrum at low momenta at the transition, we find an estimate of the effect in
reasonable agreement with numerical simulations.Comment: 4 pages, Revtex, to be published in Physical Review Letter
- …
