1,741 research outputs found

    Computational analysis of the behavior of atmospheric pollution due to demographic, structural factors, vehicular flow and commerce activities

    Get PDF
    According to the latest assessments made by the world health organization (WHO2016), the atmospheric pollution (air), has become one of the main causes of morbidity and mortality in the world, with a steep growth of respiratory diseases, increase in lung cancer, ocular complications, and dermis diseases [1,2,3]. Currently, there are governments which still underestimate investments in environmental care, turning their countries into only consumers and predators of the ecosystem [1,2,3]. Worldwide, several cities have been implementing different regional strategies to decrease environmental pollution, however, these actions have not been effective enough and significant indices of contamination and emergency declarations persist [1,2,3]. Medellín is one of the cities most affected by polluting gases in Latin America due to the high growth of construction sector, high vehicular flow, increase in commerce, besides a little assertive planting trees system, among other reasons [1,2,3]. With the purpose of providing new researching elements which benefit the improvement of air quality in the cities of the world, it is pretended to mathematically model and computationally implement the behavior of the flow of air, e.g., in zones in the city of Medellín to determine the extent of pollution by tightness, impact of current architectural designs, vehicular transport, high commerce flow, and confinement in the public transport system. The simulations allowed to identify spotlights of particulate tightness caused by architectural designs of the city which do not benefit air flow. Also, recirculating gases were observed in different zones of the city. This research can offer greater knowledge around the incidence of pollution generated by structures and architecture. Likewise, these studies can contribute to a better urban, structural and ecological reordering in cities, the implementation of an assertive arborization system, and the possibility to orientate effective strategies over cleaning (purification) and contaminant extracting systems

    Human Factor Aspects of Traffic Safety

    Get PDF

    Excited electronic states from a variational approach based on symmetry-projected Hartree--Fock configurations

    Get PDF
    Recent work from our research group has demonstrated that symmetry-projected Hartree--Fock (HF) methods provide a compact representation of molecular ground state wavefunctions based on a superposition of non-orthogonal Slater determinants. The symmetry-projected ansatz can account for static correlations in a computationally efficient way. Here we present a variational extension of this methodology applicable to excited states of the same symmetry as the ground state. Benchmark calculations on the C2_2 dimer with a modest basis set, which allows comparison with full configuration interaction results, indicate that this extension provides a high quality description of the low-lying spectrum for the entire dissociation profile. We apply the same methodology to obtain the full low-lying vertical excitation spectrum of formaldehyde, in good agreement with available theoretical and experimental data, as well as to a challenging model C2vC_{2v} insertion pathway for BeH2_2. The variational excited state methodology developed in this work has two remarkable traits: it is fully black-box and will be applicable to fairly large systems thanks to its mean-field computational cost

    The DEEP2 Galaxy Redshift Survey: Discovery of Luminous, Metal-poor, Sta r-forming Galaxies at Redshifts z~0.7

    Full text link
    We have discovered a sample of 17 metal-poor, yet luminous, star-forming galaxies at redshifts z~0.7. They were selected from the initial phase of the DEEP2 survey of 3900 galaxies and the Team Keck Redshift Survey (TKRS) of 1536 galaxies as those showing the temperature-sensitive [OIII]l4363 auroral line. These rare galaxies have blue luminosities close to L*, high star formation rates of 5 to 12 solar masses per year, and oxygen abundances of 1/3 to 1/10 solar. They thus lie significantly off the luminosity-metallicity relation found previously for field galaxies with strong emission lines at redshifts z~0.7. The prior surveys relied on indirect, empirical calibrations of the R23 diagnostic and the assumption that luminous galaxies are not metal-poor. Our discovery suggests that this assumption is sometimes invalid. As a class, these newly-discovered galaxies are: (1) more metal-poor than common classes of bright emission-line galaxies at z~0.7 or at the present epoch; (2) comparable in metallicity to z~3 Lyman Break Galaxies but less luminous; and (3) comparable in metallicity to local metal-poor eXtreme Blue Compact Galaxies (XBCGs), but more luminous. Together, the three samples suggest that the most-luminous, metal-poor, compact galaxies become fainter over time.Comment: This is a .tgz file. It should create the following files: texto.tex, tab1.tex, f1.eps and f2.eps. The LaTeX style used is emulateapj.cls, version November 26, 2004. This submission is 5 pages long, one table and two figures. To appear in ApJ

    Stellar Populations Found in the Central kpc of Four Luminous Compact Blue Galaxies at Intermediate Redshift

    Full text link
    We investigate the star formation history of the central regions of four Luminous Compact Blue Galaxies (LCBGs). LCBGs are blue (B-V<0.6), compact (MU_B<21.5 mag arcsec^-2) galaxies with absolute magnitudes M_B brighter than -17.5. The LCBGs analyzed here are located at 0.436<z<0.525. They are among the most luminous (M_B < -20.5), blue (B-V < 0.4) and high surface brightness (MU_B < 19.0 mag arcsec^-2) of this population. The observational data used were obtained with the HST/STIS spectrograph, the HST/WF/PC-2 camera and the HST/NICMOS first camera. We find evidence for multiple stellar populations. One of them is identified as the ionizing population, and the other one corresponds to the underlying stellar generation. The estimated masses of the inferred populations are compatible with the dynamical masses, which are typically 2--10x 10^9 M_sun. Our models also indicate that the first episodes of star formation the presented LCBGs underwent happened between 5 and 7 Gyr ago. We compare the stellar populations found in LCBGs with the stellar populations present in bright, local HII galaxies, nearby spheroidal systems and Blue Compact Dwarf Galaxies. It turns out that the underlying stellar populations of LCBGs are similar yet bluer to those of local HII galaxies. It is also the case that the passive color evolution of the LCBGs could convert them into local Spheroidal galaxies if no further episode of star formation takes place. Our results help to impose constraints on evolutionary scenarios for the population of LCBGs found commonly at intermediate redshifts.Comment: 35 pages, 10 Figures. Accepted for publication in AJ. Compile with pdflatex. Contains png figure

    Strong disorder renormalization group study of aperiodic quantum Ising chains

    Full text link
    We employ an adaptation of a strong-disorder renormalization-group technique in order to analyze the ferro-paramagnetic quantum phase transition of Ising chains with aperiodic but deterministic couplings under the action of a transverse field. In the presence of marginal or relevant geometric fluctuations induced by aperiodicity, for which the critical behavior is expected to depart from the Onsager universality class, we derive analytical and asymptotically exact expressions for various critical exponents (including the correlation-length and the magnetization exponents, which are not easily obtainable by other methods), and shed light onto the nature of the ground state structures in the neighborhood of the critical point. The main results obtained by this approach are confirmed by finite-size scaling analyses of numerical calculations based on the free-fermion method

    Stationary strings and branes in the higher-dimensional Kerr-NUT-(A)dS spacetimes

    Full text link
    We demonstrate complete integrability of the Nambu-Goto equations for a stationary string in the general Kerr-NUT-(A)dS spacetime describing the higher-dimensional rotating black hole. The stationary string in D dimensions is generated by a 1-parameter family of Killing trajectories and the problem of finding a string configuration reduces to a problem of finding a geodesic line in an effective (D-1)-dimensional space. Resulting integrability of this geodesic problem is connected with the existence of hidden symmetries which are inherited from the black hole background. In a spacetime with p mutually commuting Killing vectors it is possible to introduce a concept of a ξ\xi-brane, that is a p-brane with the worldvolume generated by these fields and a 1-dimensional curve. We discuss integrability of such ξ\xi-branes in the Kerr-NUT-(A)dS spacetime.Comment: 8 pages, no figure

    Holographic Meson Melting

    Full text link
    The plasma phase at high temperatures of a strongly coupled gauge theory can be holographically modelled by an AdS black hole. Matter in the fundamental representation and in the quenched approximation is introduced through embedding D7-branes in the AdS-Schwarzschild background. Low spin mesons correspond to the fluctuations of the D7-brane world volume. As is well known by now, there are two different kinds of embeddings, either reaching down to the black hole horizon or staying outside of it. In the latter case the fluctuations of the D7-brane world volume represent stable low spin mesons. In the plasma phase we do not expect mesons to be stable but to melt at sufficiently high temperature. We model the late stages of this meson melting by the quasinormal modes of D7-brane fluctuations for the embeddings that do reach down to the horizon. The inverse of the imaginary part of the quasinormal frequency gives the typical relaxation time back to equilibrium of the meson perturbation in the hot plasma. We briefly comment on the possible application of our model to quarkonium suppression.Comment: 25+1 pages, 6 figures; v4: references adde

    Holographic Josephson Junctions and Berry holonomy from D-branes

    Full text link
    We construct a holographic model for Josephson junctions with a defect system of a Dp brane intersecting a D(p+2) brane. In addition to providing a geometrical picture for the holographic dual, this leads us very naturally to suggest the possibility of non-Abelian Josephson junctions characterized in terms of the topological properties of the branes. The difference between the locations of the endpoints of the Dp brane on either side of the defect translates into the phase difference of the condensate in the Josephson junction. We also add a magnetic flux on the D(p+2) brane and allow it evolve adiabatically along a closed curve in the space of the magnetic flux, while generating a non-trivial Berry holonomy.Comment: 20 pages, 2 figure
    corecore