25 research outputs found

    An efficient approach to BAC based assembly of complex genomes

    Get PDF
    Background: There has been an exponential growth in the number of genome sequencing projects since the introduction of next generation DNA sequencing technologies. Genome projects have increasingly involved assembly of whole genome data which produces inferior assemblies compared to traditional Sanger sequencing of genomic fragments cloned into bacterial artificial chromosomes (BACs). While whole genome shotgun sequencing using next generation sequencing (NGS) is relatively fast and inexpensive, this method is extremely challenging for highly complex genomes, where polyploidy or high repeat content confounds accurate assembly, or where a highly accurate ‘gold’ reference is required. Several attempts have been made to improve genome sequencing approaches by incorporating NGS methods, to variable success. Results: We present the application of a novel BAC sequencing approach which combines indexed pools of BACs, Illumina paired read sequencing, a sequence assembler specifically designed for complex BAC assembly, and a custom bioinformatics pipeline. We demonstrate this method by sequencing and assembling BAC cloned fragments from bread wheat and sugarcane genomes. Conclusions: We demonstrate that our assembly approach is accurate, robust, cost effective and scalable, with applications for complete genome sequencing in large and complex genomes

    The Assembly of Individual Chaplin Peptides from Streptomyces coelicolor into Functional Amyloid Fibrils

    Get PDF
    The self-association of proteins into amyloid fibrils offers an alternative to the natively folded state of many polypeptides. Although commonly associated with disease, amyloid fibrils represent the natural functional state of some proteins, such as the chaplins from the soil-dwelling bacterium Streptomyces coelicolor, which coat the aerial mycelium and spores rendering them hydrophobic. We have undertaken a biophysical characterisation of the five short chaplin peptides ChpD-H to probe the mechanism by which these peptides self-assemble in solution to form fibrils. Each of the five chaplin peptides produced synthetically or isolated from the cell wall is individually surface-active and capable of forming fibrils under a range of solution conditions in vitro. These fibrils contain a highly similar cross-β core structure and a secondary structure that resembles fibrils formed in vivo on the spore and mycelium surface. They can also restore the growth of aerial hyphae to a chaplin mutant strain. We show that cysteine residues are not required for fibril formation in vitro and propose a role for the cysteine residues conserved in four of the five short chaplin peptides

    Recent advances in <i>Cannabis sativa</i> genomics research

    Get PDF
    Cannabis (Cannabis sativa L.) is one of the oldest cultivated plants purported to have unique medicinal properties. However, scientific research of cannabis has been restricted by the Single Convention on Narcotic Drugs of 1961, an international treaty that prohibits the production and supply of narcotic drugs except under license. Legislation governing cannabis cultivation for research, medicinal and even recreational purposes has been relaxed recently in certain jurisdictions. As a result, there is now potential to accelerate cultivar development of this multi-use and potentially medically useful plant species by application of modern genomics technologies. Whilst genomics has been pivotal to our understanding of the basic biology and molecular mechanisms controlling key traits in several crop species, much work is needed for cannabis. In this review we provide a comprehensive summary of key cannabis genomics resources and their applications. We also discuss prospective applications of existing and emerging genomics technologies for accelerating the genetic improvement of cannabis

    Exploring the genetic and adaptive diversity of a pan‑Mediterranean crop wild relative: narrow‑leafed lupin

    No full text
    Key messageThis first pan-Mediterranean analysis of genetic diversity in wild narrow-leafed lupin revealed strong East–West genetic differentiation of populations, an historic eastward migration, and signatures of genetic adaptation to climatic variables. AbstractMost grain crops suffer from a narrow genetic base, which limits their potential for adapting to new challenges such as increased stresses associated with climate change. Plant breeders are returning to the wild ancestors of crops and their close relatives to broaden the genetic base of their crops. Understanding the genetic adaptation of these wild relatives will help plant breeders most effectively use available wild diversity. Here, we took narrow-leafed lupin (Lupinus angustifolius L.) as a model to understand adaptation in a wild crop ancestor. A set of 142 wild accessions of narrow-leafed lupin from across the Mediterranean basin were subjected to genotyping-by-sequencing using Diversity Arrays Technology. Phylogenetic, linkage disequilibrium and demographic analyses were employed to explore the history of narrow-leafed lupin within the Mediterranean region. We found strong genetic differentiation between accessions from the western and eastern Mediterranean, evidence of an historic West to East migration, and that eastern Mediterranean narrow-leafed lupin experienced a severe and recent genetic bottleneck. We showed that these two populations differ for flowering time as a result of local adaptation, with the West flowering late while the East flowers early. A genome-wide association study identified single nucleotide polymorphism markers associated with climatic adaptation. Resolving the origin of wild narrow-leafed lupin and how its migration has induced adaptation to specific regions of the Mediterranean serves as a useful resource not only for developing narrow-leafed lupin cultivars with greater resilience to a changing climate, but also as a model which can be applied to other legumes.</p

    Bacterial Pan-Genomics

    No full text

    Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus

    Get PDF
    Homoeologous exchanges (HEs) have been shown to generate novel gene combinations and phenotypes in a range of polyploid species. Gene presence/absence variation (PAV) is also a major contributor to genetic diversity. In this study, we show that there is an association between these two events, particularly in recent Brassica napus synthetic accessions, and that these represent a novel source of genetic diversity, which can be captured for the improvement of this important crop species. By assembling the pangenome of B. napus, we show that 38% of the genes display PAV behaviour, with some of these variable genes predicted to be involved in important agronomic traits including flowering time, disease resistance, acyl lipid metabolism and glucosinolate metabolism. This study is a first and provides a detailed characterization of the association between HEs and PAVs in B. napus at the pangenome level

    Legume pangenome construction using an iterative mapping and assembly approach

    No full text
    A pangenome is a collection of genomic sequences found in the entire species rather than a single individual. It allows for comprehensive, species-wide characterization of genetic variations and mining of variable genes which may play important roles in phenotypes of interest. Recent advances in sequencing technologies have facilitated draft genome sequence construction and have made pangenome constructions feasible. Here, we present a reference genome-based iterative mapping and assembly method to construct a pangenome for a legume species

    Exploring the genetic and adaptive diversity of a pan-Mediterranean crop wild relative: narrow-leafed lupin

    Get PDF
    This first pan-Mediterranean analysis of genetic diversity in wild narrow-leafed lupin revealed strong East-West genetic differentiation of populations, an historic eastward migration, and signatures of genetic adaptation to climatic variables. Most grain crops suffer from a narrow genetic base, which limits their potential for adapting to new challenges such as increased stresses associated with climate change. Plant breeders are returning to the wild ancestors of crops and their close relatives to broaden the genetic base of their crops. Understanding the genetic adaptation of these wild relatives will help plant breeders most effectively use available wild diversity. Here, we took narrow-leafed lupin (Lupinus angustifolius L.) as a model to understand adaptation in a wild crop ancestor. A set of 142 wild accessions of narrow-leafed lupin from across the Mediterranean basin were subjected to genotyping-by-sequencing using Diversity Arrays Technology. Phylogenetic, linkage disequilibrium and demographic analyses were employed to explore the history of narrow-leafed lupin within the Mediterranean region. We found strong genetic differentiation between accessions from the western and eastern Mediterranean, evidence of an historic West to East migration, and that eastern Mediterranean narrow-leafed lupin experienced a severe and recent genetic bottleneck. We showed that these two populations differ for flowering time as a result of local adaptation, with the West flowering late while the East flowers early. A genome-wide association study identified single nucleotide polymorphism markers associated with climatic adaptation. Resolving the origin of wild narrow-leafed lupin and how its migration has induced adaptation to specific regions of the Mediterranean serves as a useful resource not only for developing narrow-leafed lupin cultivars with greater resilience to a changing climate, but also as a model which can be applied to other legumes
    corecore