7,327 research outputs found

    Statistical features of the thermal neutron capture cross sections

    Full text link
    We discuss the existence of huge thermal neutron capture cross sections in several nuclei. The values of the cross sections are several orders of magnitude bigger than expected at these very low energies. We lend support to the idea that this phenomenon is random in nature and is similar to what we have learned from the study of parity violation in the actinide region. The idea of statistical doorways is advanced as a unified concept in the delineation of large numbers in the nuclear world. The average number of maxima per unit mass, in the capture cross section is calculated and related to the underlying cross section correlation function and found to be =3/(π2γA) = 3/(\pi \sqrt{2}\gamma_{A}), where γA\gamma_{A} is a characteristic mass correlation width which designates the degree of remnant coherence in the system. We trace this coherence to nucleosynthesis which produced the nuclei whose neutron capture cross sections are considered here.Comment: 7 pages, 6 figures. To appear in Acta Physica Polonica B as a Contribution to the proceedings of:Jagiellonian Symposium of Fundamental and Applied Subatomic Physics, June 7- 12, 2015 Krakow, Polan

    Inclusive Breakup Theory of Three-Body Halos

    Full text link
    We present a recently developed theory for the inclusive breakup of three-fragment projectiles within a four-body spectator model \cite{CarPLB2017}, for the treatment of the elastic and inclusive non-elastic break up reactions involving weakly bound three-cluster nuclei in A(a,b)XA\,(a,b)\,X / a=x1+x2+ba = x_1 + x_2 + b collisions. The four-body theory is an extension of the three-body approaches developed in the 80's by Ichimura, Autern and Vincent (IAV) \cite{IAV1985}, Udagawa and Tamura (UT) \cite{UT1981} and Hussein and McVoy (HM) \cite{HM1985}. We expect that experimentalists shall be encouraged to search for more information about the x1+x2x_{1} + x_{2} system in the elastic breakup cross section and that also further developments and extensions of the surrogate method will be pursued, based on the inclusive non-elastic breakup part of the bb spectrum.Comment: 8 pages, 3 figures, Contribution to the Proceedings of Fusion17: "International Conference on Heavy-Ion Collisions at Near-Barrier Energies", 20-24 February 2017 Hobart, Tasmania, Australi

    Nonlinear Schrodinger equation with chaotic, random, and nonperiodic nonlinearity

    Full text link
    In this paper we deal with a nonlinear Schr\"{o}dinger equation with chaotic, random, and nonperiodic cubic nonlinearity. Our goal is to study the soliton evolution, with the strength of the nonlinearity perturbed in the space and time coordinates and to check its robustness under these conditions. Comparing with a real system, the perturbation can be related to, e.g., impurities in crystalline structures, or coupling to a thermal reservoir which, on the average, enhances the nonlinearity. We also discuss the relevance of such random perturbations to the dynamics of Bose-Einstein Condensates and their collective excitations and transport.Comment: 4 pages, 6 figure

    Effect of symmetry breaking on level curvature distributions

    Full text link
    We derive an exact general formalism that expresses the eigenvector and the eigenvalue dynamics as a set of coupled equations of motion in terms of the matrix elements dynamics. Combined with an appropriate model Hamiltonian, these equations are used to investigate the effect of the presence of a discrete symmetry in the level curvature distribution. An explanation of the unexpected behavior of the data regarding frequencies of acoustic vibrations of quartz block is provided.Comment: 13 pages, 3 figure

    Deep Multi-Modal Classification of Intraductal Papillary Mucinous Neoplasms (IPMN) with Canonical Correlation Analysis

    Full text link
    Pancreatic cancer has the poorest prognosis among all cancer types. Intraductal Papillary Mucinous Neoplasms (IPMNs) are radiographically identifiable precursors to pancreatic cancer; hence, early detection and precise risk assessment of IPMN are vital. In this work, we propose a Convolutional Neural Network (CNN) based computer aided diagnosis (CAD) system to perform IPMN diagnosis and risk assessment by utilizing multi-modal MRI. In our proposed approach, we use minimum and maximum intensity projections to ease the annotation variations among different slices and type of MRIs. Then, we present a CNN to obtain deep feature representation corresponding to each MRI modality (T1-weighted and T2-weighted). At the final step, we employ canonical correlation analysis (CCA) to perform a fusion operation at the feature level, leading to discriminative canonical correlation features. Extracted features are used for classification. Our results indicate significant improvements over other potential approaches to solve this important problem. The proposed approach doesn't require explicit sample balancing in cases of imbalance between positive and negative examples. To the best of our knowledge, our study is the first to automatically diagnose IPMN using multi-modal MRI.Comment: Accepted for publication in IEEE International Symposium on Biomedical Imaging (ISBI) 201

    The Semiclassical Coulomb Interaction

    Full text link
    The semiclassical Coulomb excitation interaction is at times expressed in the Lorentz gauge in terms of the electromagnetic fields and a contribution from the scalar electric potential. We point out that the potential term can make spurious contributions to excitation cross sections, especially when the the decay of excited states is taken into account. We show that, through an appropriate gauge transformation, the excitation interaction can be expressed in terms of the electromagnetic fields alone.Comment: 12 pages. Phys. Rev. C, Rapid Communication, in pres

    A Life Table of the Asiatic Maize Stem Borer, Ostrinia furnacalis Guene

    Get PDF
    The survivor ship and fecundity rates of Ostrinia furnacalis Guenee were measured in the laboratory using the major host plant, the maize plant. Raw data analysis of the age-specific single-sex female life table is described. The intrinsic rates of increase were calculated with respect to single sex. Using the single-sex method, the intrinsic rate of natural increase (1), the net reproductive rate (R), the generation time (T) and the doubling time (DT) were 0.157, 139.6, 31.5 days and 4.62 days, respectively. The age-specific survival and fecundity curves showed that ovi position peakedon the 8th day after female emergence and lasted for 11 days. The survival rates for the egg, larval and pupal stages were 96, 85 and 90%, respectively. The maximum life span (from egg to death of adult) was 38 days. The male moth emerged 2 days earlier than the females. Adult longevity averaged 7 days. Female fecundity reached a maximum of 115 eggs with an average fecundity of 60 eggs per femal
    corecore