47 research outputs found
Templated Synthesis of Peptide Nucleic Acids via Sequence-Selective Base-Filling Reactions
The templated synthesis of nucleic acids has previously been achieved through the backbone ligation of preformed nucleotide monomers or oligomers. In contrast, here we demonstrate templated nucleic acid synthesis using a base-filling approach in which individual bases are added to abasic sites of a peptide nucleic acid (PNA). Because nucleobase substrates in this approach are not self-reactive, a base-filling approach may reduce the formation of nontemplated reaction products. Using either reductive amination or amine acylation chemistries, we observed efficient and selective addition of each of the four nucleobases to an abasic site in the middle of the PNA strand. We also describe the addition of single nucleobases to the end of a PNA strand through base filling, as well as the tandem addition of two bases to the middle of the PNA strand. These findings represent an experimental foundation for nonenzymatic information transfer through base filling.Chemistry and Chemical Biolog
OC-0269 A randomized phase III trial for alleviating radiation-induced xerostomia with chewing gum
A randomized phase III trial for alleviating radiation-induced xerostomia with chewing gum
Modification of the binding affinity of peptide nucleic acids (PNA) - PNA with extended backbones consisting of 2-aminoethyl-beta-alanine or 3-aminopropylglycine units
Designing DNA nanodevices for compatibility with the immune system of higher organisms
DNA is proving to be a powerful scaffold to construct molecularly precise designer DNA devices. Recent trends reveal their ever-increasing deployment within living systems as delivery devices that not only probe but also program and reprogram a cell, or even whole organisms. Given that DNA is highly immunogenic, we outline the molecular, cellular and organismal response pathways that designer nucleic acid nanodevices are likely to elicit in living systems. We address safety issues applicable when such designer DNA nanodevices interact with the immune system. In light of this, we discuss possible molecular programming strategies that could be integrated with such designer nucleic acid scaffolds to either evade or stimulate the host response with a view to optimizing and widening their applications in higher organisms
