1,768 research outputs found

    Possible Molecular Structure of the Newly Observed Y(4260)

    Full text link
    We suggest that the newly observed resonance Y(4260) is a χcρ0\chi_{c}-\rho^0 molecule, which is an isovector. In this picture, we can easily interpret why Y(4260)π+πJ/ψY(4260)\to \pi^+\pi^-J/\psi has a larger rate than Y(4260)DDˉY(4260)\to D\bar D which has not been observed, and we also predict existence of the other two components of the isotriplet and another two possible partner states which may be observed in the future experiments. A direct consequence of this structure is that for this molecular structure Y(4260)π+πJ/ψY(4260)\to \pi^+\pi^-J/\psi mode is more favorable than Y(4260)KKˉJ/ψY(4260)\to K\bar KJ/\psi which may have a larger fraction if other proposed structures prevail.Comment: 5 pages, 2 figures. Some descriptions changed, more references added and typos corrected. Published version in PR

    Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein

    Get PDF
    The origin recognition complex (ORC) is an initiator protein for DNA replication, but also effects transcriptional silencing in Saccharomyces cerevisiae and heterochromatin function in Drosophila. It is not known, however, whether any of these functions of ORC is conserved in mammals. We report the identification of a novel protein, HBO1 (histone acetyltransferase binding to ORC), that interacts with human ORC1 protein, the largest subunit of ORC. HBO1 exists as part of a multisubunit complex that possesses histone H3 and H4 acetyltransferase activities. A fraction of the relatively abundant HBO1 protein associates with ORC1 in human cell extracts. HBO1 is a member of the MYST domain family that includes S. cerevisiae Sas2p, a protein involved in control of transcriptional silencing that also has been genetically linked to ORC function. Thus the interaction between ORC and a MYST domain acetyltransferase is widely conserved. We suggest roles for ORC-mediated acetylation of chromatin in control of both DNA replication and gene expression

    Stochastic Process Associated with Traveling Wave Solutions of the Sine-Gordon Equation

    Full text link
    Stochastic processes associated with traveling wave solutions of the sine-Gordon equation are presented. The structure of the forward Kolmogorov equation as a conservation law is essential in the construction and so is the traveling wave structure. The derived stochastic processes are analyzed numerically. An interpretation of the behaviors of the stochastic processes is given in terms of the equation of motion.Comment: 12 pages, 9 figures; corrected typo

    Exclusive ϕ\phi production in proton-proton collisions in the resonance model

    Full text link
    The exclusive ϕ\phi meson production in proton-proton reactions is calculated within the resonance model. The considered model was already successfully applied to the description of π\pi, η\eta, ρ\rho, ω\omega, ππ\pi\pi production in proton-proton collisions. The only new parameter entering into the model is the ωϕ\omega-\phi mixing angle θmix\theta_{mix} which is taken equal to θmix3.7o\theta_{mix} \approx 3.7^o.Comment: 7 pages, 1 figure, to appear in the brief report section of PR

    Glueball enhancements in p(gamma,VV)p through vector meson dominance

    Full text link
    Double vector meson photoproduction, p(gamma, G -> VV)p, mediated by a scalar glueball G is investigated. Using vector meson dominance (VMD) and Regge/pomeron phenomenology, a measureable glueball enhancement is predicted in the invariant VV = rho rho and omega omega mass spectra. The scalar glueball is assumed to be the lightest physical state on the daughter pomeron trajectory governing diffractive vector meson photoproduction. In addition to cross sections, calculations for hadronic and electromagnetic glueball decays, G -> V V' (V,V'= rho, omega, phi, gamma), and gamma_v V -> G transition form factors are presented based upon flavor universality, VMD and phenomenological couplings from phi photoproduction analyses. The predicted glueball decay widths are similar to an independent theoretical study. A novel signature for glueball detection is also discussed

    Chemical characteristics in a 22-m ice core on the Belukha Glacier, Russia

    Get PDF
    To better understand how the chemical composition of a glacier in an inland continental region relates to the local climate, we collected ice core samples from the Belukha Glacier, Russia, in July 2001. We analyzed the samples for pH, anions, and cations. The primary soluble ions were SO42-, NO3-, NH4+, Ca2+, and HCOO-. Moreover, we argue the following. 1) Ca2+ and its equivalent SO42-+ NO3- likely originated from terrestrial dust such as soil. 2) HCOO- and its equivalent NH4+ likely originated from vegetation and/or biomass burning. 3) The remaining SO42-+NO3- and NH4+ likely originated from livestock, commercial fertilizers, and natural fertilizers. 4) The NH4+ concentration was low when there was no contribution from vegetation and/or biomass burning

    Subthreshold phi-meson production in heavy-ion collisions

    Full text link
    Within a transport code of BUU type the production of phi-mesons in the reactions Ni+Ni at 1.93 AGeV and Ru+Ru at 1.69 AGeV is studied. New elementary reaction channels rho+N(Delta) to phi+N and pi+N(1520) to phi+N are included. In spite of a substantial increase of the \phi multiplicities by these channels the results stay below the tentative numbers extracted from experimental data.Comment: 17 pages(LaTeX), two new figures adde

    A Quantum Mechanical Model of Spherical Supermembranes

    Get PDF
    We present a quantum mechanical model of spherical supermembranes. Using superfields to represent the cartesian coordinates of the membrane, we are able to exactly determine its supersymmetric vacua. We find there are two classical vacua, one corresponding to an extended membrane and one corresponding to a point-like membrane. For the N=2{\mathcal N} = 2 case, instanton effects then lift these vacua to massive states. For the N=4{\mathcal N} = 4 case, there is no instanton tunneling, and the vacua remain massless. Similarities to spherical supermembranes as giant gravitons and in Matrix theory on pp-waves is discussed.Comment: 9 page

    Inner Space Preserving Generative Pose Machine

    Full text link
    Image-based generative methods, such as generative adversarial networks (GANs) have already been able to generate realistic images with much context control, specially when they are conditioned. However, most successful frameworks share a common procedure which performs an image-to-image translation with pose of figures in the image untouched. When the objective is reposing a figure in an image while preserving the rest of the image, the state-of-the-art mainly assumes a single rigid body with simple background and limited pose shift, which can hardly be extended to the images under normal settings. In this paper, we introduce an image "inner space" preserving model that assigns an interpretable low-dimensional pose descriptor (LDPD) to an articulated figure in the image. Figure reposing is then generated by passing the LDPD and the original image through multi-stage augmented hourglass networks in a conditional GAN structure, called inner space preserving generative pose machine (ISP-GPM). We evaluated ISP-GPM on reposing human figures, which are highly articulated with versatile variations. Test of a state-of-the-art pose estimator on our reposed dataset gave an accuracy over 80% on PCK0.5 metric. The results also elucidated that our ISP-GPM is able to preserve the background with high accuracy while reasonably recovering the area blocked by the figure to be reposed.Comment: http://www.northeastern.edu/ostadabbas/2018/07/23/inner-space-preserving-generative-pose-machine

    Universal scaling properties of extremal cohesive holographic phases

    Get PDF
    We show that strongly-coupled, translation-invariant holographic IR phases at finite density can be classified according to the scaling behaviour of the metric, the electric potential and the electric flux introducing four critical exponents, independently of the details of the setup. Solutions fall into two classes, depending on whether they break relativistic symmetry or not. The critical exponents determine key properties of these phases, like thermodynamic stability, the (ir)relevant deformations around them, the low-frequency scaling of the optical conductivity and the nature of the spectrum for electric perturbations. We also study the scaling behaviour of the electric flux through bulk minimal surfaces using the Hartnoll-Radicevic order parameter, and characterize the deviation from the Ryu-Takayanagi prescription in terms of the critical exponents.Comment: v4: corrected a typo in eqn (3.29), now (3.28). Conclusions unchange
    corecore