87 research outputs found

    On the role of computers in creativity-support systems

    Get PDF
    We report here on our experiences with designing computer-based creativity-support systems over several years. In particular, we present the design of three different systems incorporating different mechanisms of creativity. One of them uses an idea proposed by Rodari to stimulate imagination of the children in writing a picture-based story. The second one is aimed to model creativity in legal reasoning, and the third one uses low-level perceptual similarities to stimulate creation of novel conceptual associations in unrelated pictures.We discuss lessons learnt from these approaches, and address their implications for the question of how far creativity can be tamed by algorithmic approaches

    ISML: an interface specification meta-language

    Get PDF
    In this paper we present an abstract metaphor model situated within a model-based user interface framework. The inclusion of metaphors in graphical user interfaces is a well established, but mostly craft-based strategy to design. A substantial body of notations and tools can be found within the model-based user interface design literature, however an explicit treatment of metaphor and its mappings to other design views has yet to be addressed. We introduce the Interface Specification Meta-Language (ISML) framework and demonstrate its use in comparing the semantic and syntactic features of an interactive system. Challenges facing this research are outlined and further work proposed

    Evaluating Metaphor Reification in Tangible Interfaces

    Get PDF
    International audienceMetaphors are a powerful conceptual device to reason about human actions. As such, they have been heavily used in designing and describing human computer interaction. Since they can address scripted text, verbal expression, imaging, sound, and gestures, they can also be considered in the design and analysis of multimodal interfaces. In this paper we discuss the description and evaluation of the relations between metaphors and their implementation in human computer interaction with a focus on tangible user interfaces (TUIs), a form of multimodal interface. The objective of this paper is to define how metaphors appear in a tangible context in order to support their evaluation. Relying on matching entities and operations between the domain of interaction and the domain of the digital application, we propose a conceptual framework based on three components: a structured representation of the mappings holding between the metaphor source, the metaphor target, the interface and the digital system; a conceptual model for describing metaphorical TUIs; three relevant properties, coherence, coverage and compliance, which define at what extent the implementation of a metaphorical tangible interface matches the metaphor. The conceptual framework is then validated and applied on a tangible prototype in an educational application

    Reports on the 2014 AAAI Fall Symposium Series

    Get PDF
    Knowledge, Skill, and Behavior Transfer in Autonomous Robots: report on pp. 109-11

    Multi-Scale Stochastic Simulation of Diffusion-Coupled Agents and Its Application to Cell Culture Simulation

    Get PDF
    Many biological systems consist of multiple cells that interact by secretion and binding of diffusing molecules, thus coordinating responses across cells. Techniques for simulating systems coupling extracellular and intracellular processes are very limited. Here we present an efficient method to stochastically simulate diffusion processes, which at the same time allows synchronization between internal and external cellular conditions through a modification of Gillespie's chemical reaction algorithm. Individual cells are simulated as independent agents, and each cell accurately reacts to changes in its local environment affected by diffusing molecules. Such a simulation provides time-scale separation between the intra-cellular and extra-cellular processes. We use our methodology to study how human monocyte-derived dendritic cells alert neighboring cells about viral infection using diffusing interferon molecules. A subpopulation of the infected cells reacts early to the infection and secretes interferon into the extra-cellular medium, which helps activate other cells. Findings predicted by our simulation and confirmed by experimental results suggest that the early activation is largely independent of the fraction of infected cells and is thus both sensitive and robust. The concordance with the experimental results supports the value of our method for overcoming the challenges of accurately simulating multiscale biological signaling systems

    Mathematics, metaphor and economic visualisability

    Get PDF
    The mathematisation of economic theory is an issue that has been discussed many times. These discussions have been dominated by debate about the appropriateness of the deductive method for economics. This rather narrow focus has pushed a number of important methodological issues regarding the nature of mathematical economics aside. In this paper, it is argued that mathematical economics involves the construction of metaphor and is therefore metaphorical in nature. Whilst mathematical economics has been responsible for what are generally regarded to be notable theoretical achievements and retains a place in economics as an apparatus for the development of economic science, the meaning of mathematical economics is restricted to those elements of economic reality that may be talked about in terms of mathematical objects and there is a danger of declining economic visualisability as the metaphors of mathematical economics become less vivid
    corecore