6,432 research outputs found
A simple combinatorial algorithm for submodular function minimization
This paper presents a new simple algorithm for minimizing submodular functions. For integer valued submodular functions, the algorithm runs in O(n6EO log nM) [O (n superscript 6 E O log nM)] time, where n is the cardinality of the ground set, M is the maximum absolute value of the function value, and EO is the time for function evaluation. The algorithm can be improved to run in O ((n4EO+n5)log nM) [O ((n superscript 4 EO + n superscript 5) log nM)] time. The strongly polynomial version of this faster algorithm runs in O((n5EO + n6) log n) [O ((n superscript 5 EO + n superscript 6) log n)] time for real valued general submodular functions. These are comparable to the best known running time bounds for submodular function minimization. The algorithm can also be implemented in strongly polynomial time using only additions, subtractions, comparisons, and the oracle calls for function evaluation. This is the first fully combinatorial submodular function minimization algorithm that does not rely on the scaling method.United States. Office of Naval Research ( ONR grant N00014-08-1-0029
High-precision spectroscopy of ultracold molecules in an optical lattice
The study of ultracold molecules tightly trapped in an optical lattice can
expand the frontier of precision measurement and spectroscopy, and provide a
deeper insight into molecular and fundamental physics. Here we create, probe,
and image microkelvin Sr molecules in a lattice, and demonstrate
precise measurements of molecular parameters as well as coherent control of
molecular quantum states using optical fields. We discuss the sensitivity of
the system to dimensional effects, a new bound-to-continuum spectroscopy
technique for highly accurate binding energy measurements, and prospects for
new physics with this rich experimental system.Comment: 12 pages, 4 figure
Dynamic infinite relational model for time-varying relational data analysis
We propose a new probabilistic model for analyzing dynamic evolutions of relational data, such as additions, deletions and split & merge, of relation clusters like communities in social networks. Our proposed model abstracts observed timevarying object-object relationships into relationships between object clusters. We extend the infinite Hidden Markov model to follow dynamic and time-sensitive changes in the structure of the relational data and to estimate a number of clusters simultaneously. We show the usefulness of the model through experiments with synthetic and real-world data sets
Alterations in Canine Vertebral Bone Turnover, Microdamage Accumulation, and Biomechanical Properties following 1-year Treatment with Clinical Treatment Doses of Risedronate or Alendronate
One year of treatment with bisphosphonates at 5x the dose used for post-menopausal osteoporosis significantly increases failure load and microdamage, and decreases toughness at multiple skeletal sites in intact female beagles. The goal of this study was to determine if similar changes occur with doses equivalent to those used for post-menopausal osteoporosis treatment. Skeletally-mature female beagles were treated daily for 1 year with vehicle (VEH) or one of three doses of risedronate (RIS; 0.05, 0.10, 0.50 mg/kg/day) or alendronate (ALN; 0.10, 0.20, 1.00 mg/kg/day). Doses of ALN corresponded to treatment dose for PMO, 1/2 that dose, and 5x that dose on a mg/kg basis; RIS was given at a dose-equivalent to ALN. Vertebral density, geometry, percent ash, static/dynamic histology, microdamage, and biomechanical parameters were quantified. Trabecular bone activation frequency (Ac.f) was dose-dependently lower in RIS-treated groups (-40%, -66%, -84%, P < 0.05 vs. VEH) while the three ALN groups were all similarly lower compared to VEH (-65%, -71%, -76%; P <0.05). Crack surface density (Cr.S.Dn) was significantly higher than VEH for all doses of RIS and ALN (+2.9 to 5.4-fold vs. VEH). Stiffness was significantly increased with both agents while there were no significant changes in any other structural or estimated material properties. Cr.S.Dn and Ac.f exhibited a significant non-linear correlation (r(2) = 0.21; P < 0.001) while there was no relationship between Cr.S.Dn and any mechanical properties. These results document that 1 year of bisphosphonate treatment at clinical doses allows significant accumulation of microdamage in the vertebra but this is offset by increases in bone volume and mineralization such that there is no significant impairment of mechanical properties.The authors thank Dr. Keith Condon, Diana Jacob, Mary Hooser, and Lauren Waugh for histological preparation and Dr. Charles Turner for his assistance with mechanical testing. This work was supported by NIH Grants 5R01AR047838 and 5T32AR007581 and a research grant from The Alliance for Better Bone Health (Procter & Gamble Pharmaceuticals and sanofi-aventis). Merck and Co. kindly provided the alendronate. This investigation utilized an animal facility constructed with support from Research Facilities Improvement Program Grant Number C06RR10601 from the NIH National Center for Research Resources
Precise study of asymptotic physics with subradiant ultracold molecules
Weakly bound molecules have physical properties without atomic analogues,
even as the bond length approaches dissociation. In particular, the internal
symmetries of homonuclear diatomic molecules result in formation of two-body
superradiant and subradiant excited states. While superradiance has been
demonstrated in a variety of systems, subradiance is more elusive due to the
inherently weak interaction with the environment. Here we characterize the
properties of deeply subradiant molecular states with intrinsic quality factors
exceeding via precise optical spectroscopy with the longest
molecule-light coherent interaction times to date. We find that two competing
effects limit the lifetimes of the subradiant molecules, with different
asymptotic behaviors. The first is radiative decay via weak magnetic-dipole and
electric-quadrupole interactions. We prove that its rate increases
quadratically with the bond length, confirming quantum mechanical predictions.
The second is nonradiative decay through weak gyroscopic predissociation, with
a rate proportional to the vibrational mode spacing and sensitive to
short-range physics. This work bridges the gap between atomic and molecular
metrology based on lattice-clock techniques, yielding new understanding of
long-range interatomic interactions and placing ultracold molecules at the
forefront of precision measurements.Comment: 12 pages, 6 figure
A Field-Induced Re-Entrant Novel Phase and A Ferroelectric-Magnetic Order Coupling in HoMnO3
A re-entrant novel phase has been observed in the hexagonal ferroelectric
HoMnO3 in the presence of magnetic fields, in the temperature ranges defined by
the plateau of the dielectric constant anomaly. The dielectric plateau evolves
with fields from a narrow sharp dielectric peak at the Mn-spin rotation
transition at 32.8 K in zero magnetic field. Such a field-induced dielectric
plateau anomaly appears both in the temperature sweep at a constant field and
in the field sweep at a constant temperature without detectable hysteresis.
This is attributed to the indirect coupling between the ferroelectric and
antiferromagnetic orders, arising from an antiferromagnetic domain wall effect,
where the magnetic order parameter of the Mn subsystem has to change sign
across the ferroelectric domain wall in the compound, that influences the
ferroelectric domains via a local magnetostrictive effect
Measurements of galactic cosmic ray shielding with the CRaTER instrument
[1] The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument aboard the Lunar Reconnaissance Orbiter has been measuring energetic charged particles from the galactic cosmic rays (GCRs) and solar particle events in lunar orbit since 2009. CRaTER includes three pairs of silicon detectors, separated by pieces of tissue-equivalent plastic that shield two of the three pairs from particles incident at the zenith-facing end of the telescope. Heavy-ion beams studied in previous ground-based work have been shown to be reasonable proxies for the GCRs when their energies are sufficiently high. That work, which included GCR simulations, led to predictions for the amount of dose reduction that would be observed by CRaTER. Those predictions are compared to flight data obtained by CRaTER in 2010–2011
Raloxifene Enhances Vertebral Mechanical Properties Independent of Bone Density
Anti-remodeling agents produce similar reductions in vertebral fracture risk despite large differences in BMD changes suggesting the mechanism of fracture risk reduction may differ among these agents. Forty-eight intact (non-ovariectomized) skeletally mature female beagle dogs were treated orally for 12 months with clinically relevant doses of risedronate (RIS, 0.10 mg/kg/day), alendronate (ALN, 0.2 mg/kg/day), raloxifene (RAL, 0.50 mg/kg/day), or saline (VEH, 1 ml/kg/day). After sacrifice, the following measurements were made on vertebral bone: areal (aBMD) and volumetric (vBMD) bone mineral densities, tissue mineralization by ash content, static and dynamic histomorphometric parameters, microdamage, and extrinsic and intrinsic measures of biomechanical strength, stiffness and energy to fracture. At these doses, RAL suppressed bone turnover (-20%) significantly less than the bisphosphonates (-66 and -71%) and did not produce significant differences in aBMD, vBMD, BV/TV or percent ash compared to VEH-treated animals. Microdamage accumulation in RAL-treated animals was not significantly different than VEH; both RIS and ALN had significantly higher crack surface density compared to VEH. Stiffness was significantly higher than VEH in all treatment groups. Ultimate load divided by aBMD, a measure of strength independent of BMD, was significantly higher only in RAL-treated animals compared to VEH (+16%, P = 0.015). Based on these data, we conclude that raloxifene produces improvements in bone mechanical properties in ways that do not involve increases in BMD.The authors thank Dr. Keith Condon, Diana Jacob, Mary Hooser, and Lauren Waugh for histological preparation and Dr. Charles Turner for his assistance with mechanical testing. This work was supported by NIH Grants 5R01AR047838-03 and 5T32AR007581-09 and research grants from The Alliance for Better Bone Health (Procter and Gamble Pharmaceuticals and sanofi-aventis), and Lilly Research Laboratories. Merck and Co. kindly provided the alendronate. This investigation utilized an animal facility constructed with support from Research Facilities Improvement Program Grant Number C06 RR10601-01 from the National Center for Research Resources, National Institutes of Health
Photometric Properties of Kiso Ultraviolet-Excess Galaxies in the Lynx-Ursa Major Region
We have performed a systematic study of several regions in the sky where the
number of galaxies exhibiting star formation (SF) activity is greater than
average. We used Kiso ultraviolet-excess galaxies (KUGs) as our SF-enhanced
sample. By statistically comparing the KUG and non-KUG distributions, we
discovered four KUG-rich regions with a size of . One of these regions corresponds spatially to a filament of length
Mpc in the Lynx-Ursa Major region (). We call this ``the Lynx-Ursa
Major (LUM) filament''. We obtained surface photometry of 11 of
the KUGs in the LUM filament and used these to investigate the integrated
colors, distribution of SF regions, morphologies, and local environments. We
found that these KUGs consist of distorted spiral galaxies and compact galaxies
with blue colors. Their star formation occurs in the entire disk, and is not
confined to just the central regions. The colors of the SF regions imply that
active star formation in the spiral galaxies occurred yr ago,
while that of the compact objects occurred yr ago. Though the
photometric characteristics of these KUGs are similar to those of interacting
galaxies or mergers, most of these KUGs do not show direct evidence of merger
processes.Comment: 39 pages LaTeX, using aasms4.sty, 20 figures, ApJS accepted. The
Title of the previous one was truncated by the author's mistake, and is
corrected. Main body of the paper is unchange
- …
