22 research outputs found

    Information systems project manager soft competencies: A project-phase investigation

    Get PDF
    This article investigates the soft competencies by project phase that information systems (IS) project managers require for project success. The authors conducted 33 qualitative interviews to collect data from a sample of 22 IS project managers and business leaders located in Calgary, Alberta, Canada. The authors identified the key competencies for each of the IS project phases (initiation, planning, implementation, and close- out). The competencies were sorted into competency categories: personal attributes (e.g., eye for details), communication (e.g., effective questioning), leadership (e.g., create an effective project environment), negotiations (e.g., consensus building), professionalism (e.g., lifelong learning), social skills (e.g., charisma), and project management competencies (e.g., manage expectations). Each of the most important competencies is discussed and interconnections among competencies identified. How this research can be used by the practitioner and academic communities and the broader implications of this research are examined. © 2009 by the Project Management Institute

    The Türki̇ye earthquake sequence of February 2023: A longitudinal study report by EEFIT

    Get PDF
    On 6 February 2023 at 4:17 am local time, a large area in southeastern Türkiye and northern Syria was hit by an Mw 7.8 earthquake, which was followed by an Mw 7.5 earthquake at 1:24 pm local time, causing the loss of more than 50,000 lives, some 100,000 injuries and significant damage to buildings and infrastructure, estimated to be in the range of 84.1 billion USD for Türkiye alone. The largest earthquake in Türkiye since the deadly 1939 Erzincan earthquake with however much larger losses, the sequence immediately attracted the attention of the global post-disaster reconnaissance/engineering communities. This included the Earthquake Engineering Field Investigation Team (EEFIT), who, within one week of the event, gathered a team with 30 people from academia and industry in the UK (19), Türkiye (5), New Zealand (1), Hungary (1), Bulgaria (1), Greece (1) and USA (1) with two support members from the UK and the Netherlands, to study the events and their impacts, and also to develop suggestions to reduce the existing vulnerabilities in the future. The team was organised in the form of 6 working groups as shown below, which were (1) strong ground motions and seismotectonics, (2) geotechnics, (3) structures, (4) infrastructure, (5) remote sensing and (6) relief response and recovery

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    PROLONGED ANESTHESIA WITH NITROUS OXIDE

    Full text link
    corecore