1,989 research outputs found
Propagating Wave Phenomena Detected in Observations and Simulations of the Lower Solar Atmosphere
We present high-cadence observations and simulations of the solar
photosphere, obtained using the Rapid Oscillations in the Solar Atmosphere
imaging system and the MuRAM magneto-hydrodynamic code, respectively. Each
dataset demonstrates a wealth of magneto-acoustic oscillatory behaviour,
visible as periodic intensity fluctuations with periods in the range 110-600 s.
Almost no propagating waves with periods less than 140s and 110s are detected
in the observational and simulated datasets, respectively. High concentrations
of power are found in highly magnetised regions, such as magnetic bright points
and intergranular lanes. Radiative diagnostics of the photospheric simulations
replicate our observational results, confirming that the current breed of
magneto-hydrodynamic simulations are able to accurately represent the lower
solar atmosphere. All observed oscillations are generated as a result of
naturally occurring magnetoconvective processes, with no specific input driver
present. Using contribution functions extracted from our numerical simulations,
we estimate minimum G-band and 4170 Angstrom continuum formation heights of 100
km and 25 km, respectively. Detected magneto-acoustic oscillations exhibit a
dominant phase delay of -8 degrees between the G-band and 4170 Angstrom
continuum observations, suggesting the presence of upwardly propagating waves.
More than 73% of MBPs (73% from observations, 96% from simulations) display
upwardly propagating wave phenomena, suggesting the abundant nature of
oscillatory behaviour detected higher in the solar atmosphere may be traced
back to magnetoconvective processes occurring in the upper layers of the Sun's
convection zone.Comment: 13 pages, 9 figures, accepted into Ap
The Velocity Distribution of Solar Photospheric Magnetic Bright Points
We use high spatial resolution observations and numerical simulations to
study the velocity distribution of solar photospheric magnetic bright points.
The observations were obtained with the Rapid Oscillations in the Solar
Atmosphere instrument at the Dunn Solar Telescope, while the numerical
simulations were undertaken with the MURaM code for average magnetic fields of
200 G and 400 G. We implemented an automated bright point detection and
tracking algorithm on the dataset, and studied the subsequent velocity
characteristics of over 6000 structures, finding an average velocity of
approximately 1 km/s, with maximum values of 7 km/s. Furthermore, merging
magnetic bright points were found to have considerably higher velocities, and
significantly longer lifetimes, than isolated structures. By implementing a new
and novel technique, we were able to estimate the background magnetic flux of
our observational data, which is consistent with a field strength of 400 G.Comment: Accepted for publication in ApJL, 12 pages, 2 figure
Tracking magnetic bright point motions through the solar atmosphere
High-cadence, multiwavelength observations and simulations are employed for the analysis of solar photospheric magnetic bright points (MBPs) in the quiet Sun. The observations were obtained with the Rapid Oscillations in the Solar Atmosphere (ROSA) imager and the Interferometric Bidimensional Spectrometer at the Dunn Solar Telescope. Our analysis reveals that photospheric MBPs have an average transverse velocity of approximately 1 km s−1, whereas their chromospheric counterparts have a slightly higher average velocity of 1.4 km s−1. Additionally, chromospheric MBPs were found to be around 63 per cent larger than the equivalent photospheric MBPs. These velocity values were compared with the output of numerical simulations generated using the MURAM code. The simulated results were similar, but slightly elevated, when compared to the observed data. An average velocity of 1.3 km s−1 was found in the simulated G-band images and an average of 1.8 km s−1 seen in the velocity domain at a height of 500 km above the continuum formation layer. Delays in the change of velocities were also analysed. Average delays of ∼4 s between layers of the simulated data set were established and values of ∼29 s observed between G-band and Ca II K ROSA observations. The delays in the simulations are likely to be the result of oblique granular shock waves, whereas those found in the observations are possibly the result of a semi-rigid flux tube
Credit bureaus between risk-management, creditworthiness assessment and prudential supervision
"This text may be downloaded for personal research purposes only. Any additional reproduction for other purposes, whether in hard copy or electronically, requires the consent of the author. If cited or quoted, reference should be made to the full name of the author, the title, the working paper or other series, the year, and the publisher."This paper discusses the role and operations of consumer Credit Bureaus in the European Union in the context of the economic theories, policies and law within which they work. Across Europe there is no common practice of sharing the credit data of consumers which can be used for several purposes. Mostly, they are used by the lending industry as a practice of creditworthiness assessment or as a risk-management tool to underwrite borrowing decisions or price risk. However, the type, breath, and depth of information differ greatly from country to country. In some Member States, consumer data are part of a broader information centralisation system for the prudential supervision of banks and the financial system as a whole. Despite EU rules on credit to consumers for the creation of the internal market, the underlying consumer data infrastructure remains fragmented at national level, failing to achieve univocal, common, or defined policy objectives under a harmonised legal framework. Likewise, the establishment of the Banking Union and the prudential supervision of the Euro area demand standardisation and convergence of the data used to measure debt levels, arrears, and delinquencies. The many functions and usages of credit data suggest that the policy goals to be achieved should inform the legal and institutional framework of Credit Bureaus, as well as the design and use of the databases. This is also because fundamental rights and consumer protection concerns arise from the sharing of credit data and their expanding use
Router-level community structure of the Internet Autonomous Systems
The Internet is composed of routing devices connected between them and
organized into independent administrative entities: the Autonomous Systems. The
existence of different types of Autonomous Systems (like large connectivity
providers, Internet Service Providers or universities) together with
geographical and economical constraints, turns the Internet into a complex
modular and hierarchical network. This organization is reflected in many
properties of the Internet topology, like its high degree of clustering and its
robustness.
In this work, we study the modular structure of the Internet router-level
graph in order to assess to what extent the Autonomous Systems satisfy some of
the known notions of community structure. We show that the modular structure of
the Internet is much richer than what can be captured by the current community
detection methods, which are severely affected by resolution limits and by the
heterogeneity of the Autonomous Systems. Here we overcome this issue by using a
multiresolution detection algorithm combined with a small sample of nodes. We
also discuss recent work on community structure in the light of our results
Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations
This study presents a historical review, a meta-analysis, and recommendations for users about weight–length relationships, condition factors and relative weight equations. The historical review traces the developments of the respective concepts. The meta-analysis explores 3929 weight–length relationships of the type W = aLb for 1773 species of fishes. It shows that 82% of the variance in a plot of log a over b can be explained by allometric versus isometric growth patterns and by different body shapes of the respective species. Across species median b = 3.03 is significantly larger than 3.0, thus indicating a tendency towards slightly positive-allometric growth (increase in relative body thickness or plumpness) in most fishes. The expected range of 2.5 < b < 3.5 is confirmed. Mean estimates of b outside this range are often based on only one or two weight–length relationships per species. However, true cases of strong allometric growth do exist and three examples are given. Within species, a plot of log a vs b can be used to detect outliers in weight–length relationships. An equation to calculate mean condition factors from weight–length relationships is given as Kmean = 100aLb−3. Relative weight Wrm = 100W/(amLbm) can be used for comparing the condition of individuals across populations, where am is the geometric mean of a and bm is the mean of b across all available weight–length relationships for a given species. Twelve recommendations for proper use and presentation of weight–length relationships, condition factors and relative weight are given
The Source of Three-minute Magneto-acoustic Oscillations in Coronal Fans
We use images of high spatial, spectral and temporal resolution, obtained
using both ground- and space-based instrumentation, to investigate the coupling
between wave phenomena observed at numerous heights in the solar atmosphere.
Intensity oscillations of 3 minutes are observed to encompass photospheric
umbral dot structures, with power at least three orders-of-magnitude higher
than the surrounding umbra. Simultaneous chromospheric velocity and intensity
time series reveal an 87 \pm 8 degree out-of-phase behavior, implying the
presence of standing modes created as a result of partial wave reflection at
the transition region boundary. An average blue-shifted Doppler velocity of
~1.5 km/s, in addition to a time lag between photospheric and chromospheric
oscillatory phenomena, confirms the presence of upwardly-propagating slow-mode
waves in the lower solar atmosphere. Propagating oscillations in EUV intensity
are detected in simultaneous coronal fan structures, with a periodicity of 172
\pm 17 s and a propagation velocity of 45 \pm 7 km/s. Numerical simulations
reveal that the damping of the magneto-acoustic wave trains is dominated by
thermal conduction. The coronal fans are seen to anchor into the photosphere in
locations where large-amplitude umbral dot oscillations manifest. Derived
kinetic temperature and emission measure time-series display prominent
out-of-phase characteristics, and when combined with the previously established
sub-sonic wave speeds, we conclude that the observed EUV waves are the coronal
counterparts of the upwardly-propagating magneto-acoustic slow-modes detected
in the lower solar atmosphere. Thus, for the first time, we reveal how the
propagation of 3 minute magneto-acoustic waves in solar coronal structures is a
direct result of amplitude enhancements occurring in photospheric umbral dots.Comment: Accepted into ApJ (13 pages and 10 figures
LANDSCAN\u3csup\u3eTM\u3c/sup\u3e‐-Graziers Using Soil Tests and Natural Indicators to Make Better Decisions
- …
