8,092 research outputs found

    Latitudinal Shear Instabilities during Type I X-ray Bursts

    Full text link
    Coherent oscillations have been observed during Type I X-ray bursts from 14 accreting neutron stars in low mass X-ray binaries, providing important information about their spin frequencies. However, the origin of the brightness asymmetry on the neutron star surface producing these oscillations is still not understood. We study the stability of a zonal shearing flow on the neutron star surface using a shallow water model. We show that differential rotation of >2% between pole and equator, with the equator spinning faster than the poles, is unstable to hydrodynamic shear instabilities. The unstable eigenmodes have properties well-matched to burst oscillations: low azimuthal wavenumber m, wave speeds 1 or 2% below the equatorial spin rate, and e-folding times close to a second. Instability is related to low frequency buoyantly driven r-modes that have a mode frequency within the range of rotation frequencies in the differentially rotating shell. We discuss the implications for burst oscillations. Growth of shear instabilities may explain the brightness asymmetry in the tail of X-ray bursts, although some fine tuning of the level of differential rotation and a spin frequency near 300 Hz are required in order for the fastest growing mode to have m=1. If shear instabilities are to operate during a burst, temperature contrasts of 30% across the star must be created during ignition and spreading of the flash.Comment: To appear in ApJ (12 pages, 11 figures

    On the Robustness of NK-Kauffman Networks Against Changes in their Connections and Boolean Functions

    Full text link
    NK-Kauffman networks {\cal L}^N_K are a subset of the Boolean functions on N Boolean variables to themselves, \Lambda_N = {\xi: \IZ_2^N \to \IZ_2^N}. To each NK-Kauffman network it is possible to assign a unique Boolean function on N variables through the function \Psi: {\cal L}^N_K \to \Lambda_N. The probability {\cal P}_K that \Psi (f) = \Psi (f'), when f' is obtained through f by a change of one of its K-Boolean functions (b_K: \IZ_2^K \to \IZ_2), and/or connections; is calculated. The leading term of the asymptotic expansion of {\cal P}_K, for N \gg 1, turns out to depend on: the probability to extract the tautology and contradiction Boolean functions, and in the average value of the distribution of probability of the Boolean functions; the other terms decay as {\cal O} (1 / N). In order to accomplish this, a classification of the Boolean functions in terms of what I have called their irreducible degree of connectivity is established. The mathematical findings are discussed in the biological context where, \Psi is used to model the genotype-phenotype map.Comment: 17 pages, 1 figure, Accepted in Journal of Mathematical Physic

    Pupil participation in Scottish schools: final report

    Get PDF
    This research was commissioned by Learning and Teaching Scotland (LTS) to evaluate the nature of pupil participation in primary and secondary schools across Scotland. The specific objectives of the research were: <p>· To describe what school staff and pupils understand by the term ‘pupil participation’.</p> <p>· To describe the range and usage of pupil participation mechanisms employed in schools.</p> <p>· To describe how school staff respect and respond to pupils’ views and ideas, and those of the wider community.</p> <p>· To identify the characteristics of schools and classrooms that facilitate effective pupil participation.</p> <p>· To identify possible barriers to the development of pupil participation in schools and to make suggestions about how these can be overcome.</p> <p>· To capture examples of effective practice of pupil participation.</p> <p>· To make suggestions about how pupil participation can help support the implementation of the Curriculum for Excellence.</p&gt

    Electronic structure and chemical bonding of nc-TiC/a-C nanocomposites

    Full text link
    The electronic structure of nanocrystalline (nc-) TiC/amorphous C nanocomposites has been investigated by soft x-ray absorption and emission spectroscopy. The measured spectra at the Ti 2p and C 1s thresholds of the nanocomposites are compared to those of Ti metal and amorphous C. The corresponding intensities of the electronic states for the valence and conduction bands in the nanocomposites are shown to strongly depend on the TiC carbide grain size. An increased charge-transfer between the Ti 3d-eg states and the C 2p states has been identified as the grain size decreases, causing an increased ionicity of the TiC nanocrystallites. It is suggested that the charge-transfer occurs at the interface between the nanocrystalline TiC and the amorphous C matrix and represents an interface bonding which may be essential for the understanding of the properties of nc-TiC/amorphous C and similar nanocomposites.Comment: 13 pages, 6 figures, 1 table; http://link.aps.org/doi/10.1103/PhysRevB.80.23510

    Next-to-leading Log Resummation of Scalar and Pseudoscalar Higgs Boson Differential Cross-Sections at the LHC and Tevatron

    Full text link
    The region of small transverse momentum in q qbar- and gg-initiated processes must be studied in the framework of resummation to account for the large, logarithmically-enhanced contributions to physical observables. In this paper, we will calculate the fixed order next-to-leading order (NLO) perturbative total and differential cross-sections for both a Standard Model (SM) scalar Higgs boson and the Minimal Supersymmetric Standard Model's (MSSM) pseudoscalar Higgs boson in the Heavy Quark Effective Theory (HQET) where the mass of the top quark is taken to be infinite. Resummation coefficients B^2_g, C^2_gg for the total cross-section resummation for the pseudoscalar case are given, as well as C^1_gg for the differential cross-section.Comment: 18 pages, REVTeX4, 5 eps figures. v2: Typos corrected, references added, a discussion of uncertainties was adde

    Defect free global minima in Thomson's problem of charges on a sphere

    Get PDF
    Given NN unit points charges on the surface of a unit conducting sphere, what configuration of charges minimizes the Coulombic energy i>j=1N1/rij\sum_{i>j=1}^N 1/r_{ij}? Due to an exponential rise in good local minima, finding global minima for this problem, or even approaches to do so has proven extremely difficult. For \hbox{N=10(h2+hk+k2)+2N = 10(h^2+hk+k^2)+ 2} recent theoretical work based on elasticity theory, and subsequent numerical work has shown, that for N>500N \sim >500--1000 adding dislocation defects to a symmetric icosadeltahedral lattice lowers the energy. Here we show that in fact this approach holds for all NN, and we give a complete or near complete catalogue of defect free global minima.Comment: Revisions in Tables and Reference

    Carbon release by selective alloying of transition metal carbides

    Full text link
    We have performed first principles density functional theory calculations on TiC alloyed on the Ti sublattice with 3d transition metals ranging from Sc to Zn. The theory is accompanied with experimental investigations, both as regards materials synthesis as well as characterization. Our results show that by dissolving a metal with a weak ability to form carbides, the stability of the alloy is lowered and a driving force for the release of carbon from the carbide is created. During thin film growth of a metal carbide this effect will favor the formation of a nanocomposite with carbide grains in a carbon matrix. The choice of alloying elements as well as their concentrations will affect the relative amount of carbon in the carbide and in the carbon matrix. This can be used to design the structure of nanocomposites and their physical and chemical properties. One example of applications is as low-friction coatings. Of the materials studied, we suggest the late 3d transition metals as the most promising elements for this phenomenon, at least when alloying with TiC.Comment: 9 pages, 6 figure

    Which way up? Recognition of homologous DNA segments in parallel and antiparallel alignment

    Full text link
    Homologous gene shuffling between DNA promotes genetic diversity and is an important pathway for DNA repair. For this to occur, homologous genes need to find and recognize each other. However, despite its central role in homologous recombination, the mechanism of homology recognition is still an unsolved puzzle. While specific proteins are known to play a role at later stages of recombination, an initial coarse grained recognition step has been proposed. This relies on the sequence dependence of the DNA structural parameters, such as twist and rise, mediated by intermolecular interactions, in particular electrostatic ones. In this proposed mechanism, sequences having the same base pair text, or are homologous, have lower interaction energy than those sequences with uncorrelated base pair texts; the difference termed the recognition energy. Here, we probe how the recognition energy changes when one DNA fragment slides past another, and consider, for the first time, homologous sequences in antiparallel alignment. This dependence on sliding was termed the recognition well. We find that there is recognition well for anti-parallel, homologous DNA tracts, but only a very shallow one, so that their interaction will differ little from the interaction between two nonhomologous tracts. This fact may be utilized in single molecule experiments specially targeted to test the theory. As well as this, we test previous theoretical approximations in calculating the recognition well for parallel molecules against MC simulations, and consider more rigorously the optimization of the orientations of the fragments about their long axes. The more rigorous treatment affects the recognition energy a little, when the molecules are considered rigid. However when torsional flexibility of the DNA molecules is introduced, we find excellent agreement between analytical approximation and simulation.Comment: Paper with supplemental material attached. 41 pages in all, 4 figures in main text, 3 figures in supplmental. To be submitted to Journa

    Network growth models and genetic regulatory networks

    Full text link
    We study a class of growth algorithms for directed graphs that are candidate models for the evolution of genetic regulatory networks. The algorithms involve partial duplication of nodes and their links, together with innovation of new links, allowing for the possibility that input and output links from a newly created node may have different probabilities of survival. We find some counterintuitive trends as parameters are varied, including the broadening of indegree distribution when the probability for retaining input links is decreased. We also find that both the scaling of transcription factors with genome size and the measured degree distributions for genes in yeast can be reproduced by the growth algorithm if and only if a special seed is used to initiate the process.Comment: 8 pages with 7 eps figures; uses revtex4. Added references, cleaner figure
    corecore