26,847 research outputs found

    Compensating Large Numbers of People for Inflicted Harms

    Get PDF

    Alessandro Valignano and the Restructuring of the Jesuit Mission in Japan, 1579-1582

    Get PDF
    When Alessandro Valignano arrived in Japan in 1579, the Society of Jesus had been working in the country for thirty years. However, despite impressive numbers and considerable influence with the feudal lords, the mission was struggling. The few Jesuit workers were exhausted and growing increasingly frustrated by the leadership of Francisco Cabral, who refused to cater to Japanese sensibilities or respect the Japanese people. When Valignano arrived, he saw the harm Cabral was doing and forcibly changed the direction of the mission, pursuing policies of Jesuit accommodation to Japanese culture and respect for the Japanese converts who were training to become priests. These policies were based in respect for Japan’s culture and love for its people. Under three years of Valignano’s leadership the fortunes of the Jesuit mission changed and the Society’s work in Japan began to flourish once again. Indeed, Valignano set the course for the next thirty years of the Japanese mission

    The paradigm compiler: Mapping a functional language for the connection machine

    Get PDF
    The Paradigm Compiler implements a new approach to compiling programs written in high level languages for execution on highly parallel computers. The general approach is to identify the principal data structures constructed by the program and to map these structures onto the processing elements of the target machine. The mapping is chosen to maximize performance as determined through compile time global analysis of the source program. The source language is Sisal, a functional language designed for scientific computations, and the target language is Paris, the published low level interface to the Connection Machine. The data structures considered are multidimensional arrays whose dimensions are known at compile time. Computations that build such arrays usually offer opportunities for highly parallel execution; they are data parallel. The Connection Machine is an attractive target for these computations, and the parallel for construct of the Sisal language is a convenient high level notation for data parallel algorithms. The principles and organization of the Paradigm Compiler are discussed

    Estimated accuracy of ground-based liquid water measurements during FIRE

    Get PDF
    Since on goal of the First ISCCP Regional Experiment (FIRE) project is to improve our understanding of the relationships between cloud microphysics and cloud reflectivity, it is important that the accuracy of remote liquid measurements by microwave radiometry be thoroughly understood. The question is particularly relevant since the uncertainty in the absolute value of the radiometric liquid measurement is greatest at low liquid water contents (less than 0.1 mm). However it should be stressed that although uncertainty exists in the absolute value of liquid, it is well known that the observed radiometric signal is proportional to the amount of liquid in the antenna beam. As a result, changes in amounts of liquid are known to greater accuracy than the absolute value, which may contain a bias. Here, an assessment of the liquid measurement accuracy attained at San Nicolas Island (SNI) is presented. The vapor and liquid water data shown were computed from the radiometric brightness temperatures using statistical retrieval algorithms. The retrieval coefficients were derived from the 69 soundings made by Colorado State University during the SNI observations. Sources of error in the vapor and liquid measurements include cross-talk in the retrieval algorithms (not a factor at low liquid contents), uncertainties in the brightness temperature measurement, and uncertainties in the vapor and liquid attenuation coefficients. The relative importance of these errors is discussed. For the retrieval of path-integrated liquid water, the greatest uncertainty is caused by the temperature dependence of the absorption at microwave frequencies. As a result, the accuracy of statistical retrieval of liquid depends to large measure upon how representative the a priori radiosonde data are of the conditions prevailing during the measurements. The microwave radiometer measurements at SNI were supplemented by an infrared (IR) radiometer modified for measurement of cloud-base temperature. Thus, the IR system provides the means to incorporate continuous measurements of the liquid temperature into the retrieval process

    Public Library Services to Adults

    Get PDF
    published or submitted for publicatio

    Experimental Investigation of Air-Cooled Turbine Blades in Turbojet Engine. 7: Rotor-Blade Fabrication Procedures

    Get PDF
    An experimental investigation was conducted to determine the cooling effectiveness of a wide variety of air-cooled turbine-blade configurations. The blades, which were tested in the turbine of a - commercial turbojet engine that was modified for this investigation by replacing two of the original blades with air-cooled blades located diametrically opposite each other, are untwisted, have no aerodynamic taper, and have essentially the same external profile. The cooling-passage configuration is different for each blade, however. The fabrication procedures were varied and often unique. The blades were fabricated using methods most suitable for obtaining a small number of blades for use in the cooling investigations and therefore not all the fabrication procedures would be directly applicable to production processes, although some of the ideas and steps might be useful. Blade shells were obtained by both casting and forming. The cast shells were either welded to the blade base or cast integrally with the base. The formed shells were attached to the base by a brazing and two welding methods. Additional surface area was supplied in the coolant passages by the addition of fins or tubes that were S-brazed. to the shell. A number of blades with special leading- and trailing-edge designs that provided added cooling to these areas were fabricated. The cooling effectiveness and purposes of the various blade configurations are discussed briefly

    A compilation of information and data on the Manson impact structure

    Get PDF
    A problem for the impact hypothesis for the Cretaceous-Tertiary (K-T) mass extinction is the apparent absence of an identifiable impact site. The Manson Impact Structure is a candidate because it is the largest recognized in the U.S.; it is relatively close to the largest and most abundant shocked quartz grains found at the K-T boundary; and its age is indistinguishable from that of the K-T boundary based on paleontological evidence, fission track dates, and preliminary Ar-40/Ar-39 measurements. The region of northwest central Iowa containing the Manson Impact Structure is covered by Quaternary glacial deposits underlain by Phanerozoic sedimentary rocks (mostly flat-lying carbonates) and Proterozoic red clastic, metamorphic, volcanic, and plutonic rocks. In a circular area about 22 miles (35 km) in diameter around Manson, Iowa, this normal sequence is absent or disturbed and near the center of the disturbed area granitic basement rocks have been uplifted some 20,000 ft (6000m). Attention was drawn to Manson initially by the unusual quality of the groundwater there. Within the structure three roughly concentric zones of rock associations have been identified: (1) displaced strata; (2) completely disrupted strata, and igneous and metamorphic rocks. Manson was established as an impact structure based on its circular shape, its central uplift, and the presence of shocked quartz within the granitic central uplift. A gravity survey identified locations of low-density brecciated rocks and high-density uplifted crystalline rocks, but the outer boundary of the structure could not be established. Aeromagnetic and ground magnetic surveys showed locations and depths of shallowly buried crystalline rock and the locations of faults. A refraction seismic survey identified the crystalline central uplift, determined that the average elevation of bedrock is 70 ft (20 m) higher outside the structure than within, and was used to map the bedrock topography within the structure. A connection between the Manson impact and the K-T boundary may be established or refuted through study of the impact energy, the impact time, and composition of host rock, possible impactors, and impact melts

    Lunar Observer Laser Altimeter observations for lunar base site selection

    Get PDF
    One of the critical datasets for optimal selection of future lunar landing sites is local- to regional-scale topography. Lunar base site selection will require such data for both engineering and scientific operations purposes. The Lunar Geoscience Orbiter or Lunar Observer is the ideal precursory science mission from which to obtain this required information. We suggest that a simple laser altimeter instrument could be employed to measure local-scale slopes, heights, and depths of lunar surface features important to lunar base planning and design. For this reason, we have designed and are currently constructing a breadboard of a Lunar Observer Laser Altimeter (LOLA) instrument capable of acquiring contiguous-footprint topographic profiles with both 30-m and 300-m along-track resolution. This instrument meets all the severe weight, power, size, and data rate limitations imposed by Observer-class spacecraft. In addition, LOLA would be capable of measuring the within-footprint vertical roughness of the lunar surface, and the 1.06-micron relative surface reflectivity at normal incidence. We have used airborne laser altimeter data for a few representative lunar analog landforms to simulate and analyze LOLA performance in a 100-km lunar orbit. We demonstrate that this system in its highest resolution mode (30-m diameter footprints) would quantify the topography of all but the very smallest lunar landforms. At its global mapping resolution (300-m diameter footprints), LOLA would establish the topographic context for lunar landing site selection by providing the basis for constructing a 1-2 km spatial resolution global, geodetic topographic grid that would contain a high density of observations (e.g., approximately 1000 observations per each 1 deg by 1 deg cell at the lunar equator). The high spatial and vertical resolution measurements made with a LOLA-class instrument on a precursory Lunar Observer would be highly synergistic with high-resolution imaging datasets, and will allow for direct quantification of critical slopes, heights, and depths of features visible in images of potential lunar base sites
    corecore