16,986 research outputs found
Evaluation of a Wake Vortex Upset Model Based on Simultaneous Measurements of Wake Velocities and Probe-Aircraft Accelerations
Simultaneous measurements were made of the upset responses experienced and the wake velocities encountered by an instrumented Learjet probe aircraft behind a Boeing 747 vortex-generating aircraft. The vortex-induced angular accelerations experienced could be predicted within 30% by a mathematical upset response model when the characteristics of the wake were well represented by the vortex model. The vortex model used in the present study adequately represented the wake flow field when the vortices dissipated symmetrically and only one vortex pair existed in the wake
Cosmic rays in early star-forming galaxies and their effects on the interstellar medium
Galaxies at high redshifts with strong star formation are sources of
high-energy cosmic rays. These cosmic rays interact with the baryon and
radiation fields of the galactic environment via photo-pair, photo-pion and
proton-proton processes to produce charged and neutral pions, neutrons and
protons. The cosmic rays thereby deposit energy into the interstellar medium
(ISM) as they propagate. We show how energy transport and deposition by ultra
high-energy cosmic rays is regulated by the evolution of the galaxy, in
particular by the development of the galactic magnetic field. We show how the
particle-driven energy deposition can influence the thermal evolution of the
host and its surroundings. Using a parametric protogalaxy model, we calculate
the heating effect on the ISM as the cosmic rays are increasingly confined by
the magnetic evolution of the galaxy.Comment: 8 pages, 2 figures; Proceedings of the 35th International Cosmic Ray
Conference (ICRC2017), 10-20 July 2017, Bexco, Busan, Korea -
PoS(ICRC2017)28
Rate theory for correlated processes: Double-jumps in adatom diffusion
We study the rate of activated motion over multiple barriers, in particular
the correlated double-jump of an adatom diffusing on a missing-row
reconstructed Platinum (110) surface. We develop a Transition Path Theory,
showing that the activation energy is given by the minimum-energy trajectory
which succeeds in the double-jump. We explicitly calculate this trajectory
within an effective-medium molecular dynamics simulation. A cusp in the
acceptance region leads to a sqrt{T} prefactor for the activated rate of
double-jumps. Theory and numerical results agree
Linear analysis of a force reflective teleoperator
Complex force reflective teleoperation systems are often very difficult to analyze due to the large number of components and control loops involved. One mode of a force reflective teleoperator is described. An analysis of the performance of the system based on a linear analysis of the general full order model is presented. Reduced order models are derived and correlated with the full order models. Basic effects of force feedback and position feedback are examined and the effects of time delays between the master and slave are studied. The results show that with symmetrical position-position control of teleoperators, a basic trade off must be made between the intersystem stiffness of the teleoperator, and the impedance felt by the operator in free space
An equation of state for oxygen and nitrogen
Preliminary equations of state are presented for oxygen and nitrogen which provide accurate representations of the available P-density-T data for both fluids. The equation for nitrogen is applicable for temperatures from 70 K to 1300 K at pressures to 10,000 atmospheres, and the equation for oxygen for temperatures from 70 K to 323 K at pressures to 350 atmospheres. Deviations of calculated densities from representative experimental data are included. A volume-explicit equation of state for oxygen to be used in estimating density values in the range of applicability of the equation of state is also presented
The thermodynamic properties of oxygen and nitrogen. Part 1: Thermodynamic properties of nitrogen from 115 R to 3500 R with pressures to 150000 psia
An equation of state is presented for liquid and gaseous nitrogen for temperatures from 115 R to 3500 R and pressures to 150,000 psia. All of the pressure-density-temperature data available from the published literature have been reviewed, and appropriate corrections have been identified and applied to bring experimental temperatures into accord with the International Practical Temperature Scale of 1968. Comparisons of property values calculated from the equation of state to measured values are included to illustrate the accuracy of the equation in representing the data. The coefficients of the equation of state were determined by a weighted least squares fit to selected published data and, simultaneously, to constant volume data determined by corresponding states analysis from oxygen data, and to data which define the phase equilibrium criteria for the saturated liquid and saturated vapor. The methods of weighting the various data for simultaneous fitting are presented and discussed. The equation of state is estimated to be accurate to within 0.5 percent in the liquid region, to within 0.1 percent for supercritical isotherms up to 15,000 psia, and to within 0.3 percent from 15,000 to 150,000 psia
Integrability vs non-integrability: Hard hexagons and hard squares compared
In this paper we compare the integrable hard hexagon model with the
non-integrable hard squares model by means of partition function roots and
transfer matrix eigenvalues. We consider partition functions for toroidal,
cylindrical, and free-free boundary conditions up to sizes and
transfer matrices up to 30 sites. For all boundary conditions the hard squares
roots are seen to lie in a bounded area of the complex fugacity plane along
with the universal hard core line segment on the negative real fugacity axis.
The density of roots on this line segment matches the derivative of the phase
difference between the eigenvalues of largest (and equal) moduli and exhibits
much greater structure than the corresponding density of hard hexagons. We also
study the special point of hard squares where all eigenvalues have unit
modulus, and we give several conjectures for the value at of the
partition functions.Comment: 46 page
- …
