5,898 research outputs found

    The low-metallicity QSO HE 2158-0107: A massive galaxy growing by the accretion of nearly pristine gas from its environment?

    Full text link
    [abridged] The metallicities of AGN are usually well above solar in their NLR, often reaching up to several times solar in their broad-line regions. Low-metallicity AGN are rare objects which have so far always been associated with low-mass galaxies hosting low-mass BHs (M_BH<10^6Msun). In this paper we present IFS data of the low-redshift QSO HE 2158-0107 for which we find strong evidence for sub-solar NLR metallicities associated with a massive BH (M_BH~3x10^8Msun). The QSO is surrounded by a large extended emission-line region reaching out to 30kpc from the QSO in a tail-like geometry. We present optical and near-IR images and investigate the properties of the host galaxy. The SED of the host is rather blue, indicative of a significant young age stellar population formed within the last 1Gyr. A 3sigma upper limit of L_bulge<4.5x10^10Lsun for the H band luminosity and a corresponding stellar mass upper limit of M_bulge<3.4x10^10Msun show that the host is offset from the local BH-bulge relations. This is independently supported by the kinematics of the gas. Although the stellar mass of the host galaxy is lower than expected, it cannot explain the exceptionally low metallicity of the gas. We suggest that the extended emission-line region and the galaxy growth are caused by the infall of nearly pristine gas from the environment of the QSO host. Minor mergers of dwarf galaxies or the theoretically predicted smooth accretion of cold gas are both potential drivers behind that process. Since the metallicity of the gas in the NLR is much lower than expected, we suspect that the external gas has already reached the galaxy centre and may even contribute to the current feeding of the BH. HE 2158-0107 appears to represent a particular phase of substantial BH and galaxy growth that can be observationally linked with the accretion of external material from its environment.Comment: 14 pages, 12 figures, accepted for publication in A&

    The properties of the extended warm ionised gas around low-redshift QSOs and the lack of extended high-velocity outflows

    Full text link
    (Abridged) We present a detailed analysis of a large sample of 31 low-redshift, mostly radio-quiet type 1 QSOs observed with integral field spectroscopy to study their extended emission-line regions (EELRs). We focus on the ionisation state of the gas, size and luminosity of extended narrow line regions (ENLRs), which corresponds to those parts of the EELR dominated by ionisation from the QSO, as well as the kinematics of the ionised gas. We detect EELRs around 19 of our 31 QSOs (61%) after deblending the unresolved QSO emission and the extended host galaxy light in the integral field data. We identify 13 EELRs to be entirely ionised by the QSO radiation, 3 EELRs are composed of HII regions and 3 EELRs display signatures of both ionisation mechanisms at different locations. The typical size of the ENLR is 10kpc at a median nuclear [OIII] luminosity of log(L([OIII])/[erg/s])=42.7+-0.15. We show that the ENLR sizes are least a factor of 2 larger than determined with HST, but are consistent with those of recently reported type 2 QSOs at matching [OIII] luminosities. The ENLR of type 1 and type 2 QSOs appear to follow the same size-luminosity relation. Furthermore, we show for the first time that the ENLR size is much better correlated with the QSO continuum luminosity than with the total/nuclear [OIII] luminosity. We show that ENLR luminosity and radio luminosity are correlated, and argue that radio jets even in radio-quiet QSOs are important for shaping the properties of the ENLR. Strikingly, the kinematics of the ionised gas is quiescent and likely gravitationally driven in the majority of cases and we find only 3 objects with radial gas velocities exceeding 400km/s in specific regions of the EELR that can be associate with radio jets. In general, these are significantly lower outflow velocities and detection rates compared to starburst galaxies or radio-loud QSOs.Comment: 34 page, 22 figures (slightly degraded in resolution), 10 tables, accepted for publication in A&A, minor corrections to match with the publisher versio

    Ultrafast pump-probe dynamics in ZnSe-based semiconductor quantum-wells

    Full text link
    Pump-probe experiments are used as a controllable way to investigate the properties of photoexcited semiconductors, in particular, the absorption saturation. We present an experiment-theory comparison for ZnSe quantum wells, investigating the energy renormalization and bleaching of the excitonic resonances. Experiments were performed with spin-selective excitation and above-bandgap pumping. The model, based on the semiconductor Bloch equations in the screened Hartree-Fock approximation, takes various scattering processes into account phenomenologically. Comparing numerical results with available experimental data, we explain the experimental results and find that the electron spin-flip occurs on a time scale of 30 ps.Comment: 10 pages, 9 figures. Key words: nonlinear and ultrafast optics, modeling of femtosecond pump-probe experiments, electron spin-flip tim

    Integral field spectroscopy of nearby QSOs: I. ENLR size-luminosity relation, ongoing star formation & resolved gas-phase metallicities

    Full text link
    [abridged] We present optical integral field spectroscopy for a flux-limited sample of 19 QSOs at z<0.2 and spatially resolve their ionized gas properties at a physical resolution of 2-5kpc. The extended narrow line regions (ENLRs), photoionized by the radiation of AGN, have sizes of up to several kpc and correlate more strongly with the QSO continuum luminosity than with the integrated [OIII] luminosity. We find a relation of the form log(r)~(0.46+-0.04)log(L_5100), reinforcing the picture of an approximately constant ionization parameter for the ionized clouds across the ENLR. Besides the ENLR, we also find gas ionized by young massive stars in more than 50 per cent of the galaxies on kpc scales. In more than half of the sample, the specific star formation rates based on the extinction-corrected Ha luminosity are consistent with those of inactive disc-dominated galaxies, even for some bulge-dominated QSO hosts. Enhanced SFRs of up to 70Msun/yr are rare and always associated with signatures of major mergers. Comparison with the SFR based on the 60+100micron FIR luminosity suggests that the FIR luminosity is systematically contaminated by AGN emission and Ha appears to be a more robust and sensitive tracer for the star formation rate. Evidence for efficient AGN feedback is scarce in our sample, but some of our QSO hosts lack signatures of ongoing star formation leading to a reduced specific SFR with respect to the main sequence of galaxies. Based on 12 QSOs where we can make measurements, we find that on average bulge-dominated QSO host galaxies tend to fall below the mass-metallicity relation compared to their disc-dominated counterparts. While not yet statistically significant for our small sample, this may provide a useful diagnostic for future large surveys if this metal dilution can be shown to be linked to recent or ongoing galaxy interactions.Comment: 30 pages, 16 figures, 6 tables, accepted for publication in MNRA

    Decomposition of AGN host galaxy images

    Full text link
    We describe an algorithm to decompose deep images of Active Galactic Nuclei into host galaxy and nuclear components. Currently supported are three galaxy models: A de-Vaucouleurs spheroidal, an exponential disc, and a two-component disc+bulge model. Key features of the method are: (semi-)analytic representation of a possibly spatially variable point-spread function; full two-dimensional convolution of the model galaxy using gradient-controlled adaptive subpixelling; multiple iteration scheme. The code is computationally efficient and versatile for a wide range of applications. The quantitative performance is measured by analysing simulated imaging data. We also present examples of the application of the method to small test samples of nearby Seyfert 1 galaxies and quasars at redshifts z < 0.35.Comment: 12 pages, 15 figures, accepted for publication in MNRA

    Long-lived driven solid-state quantum memory

    Full text link
    We investigate the performance of inhomogeneously broadened spin ensembles as quantum memories under continuous dynamical decoupling. The role of the continuous driving field is two-fold: first, it decouples individual spins from magnetic noise; second and more important, it suppresses and reshapes the spectral inhomogeneity of spin ensembles. We show that a continuous driving field, which itself may also be inhomogeneous over the ensemble, can enhance the decay of the tails of the inhomogeneous broadening distribution considerably. This fact enables a spin ensemble based quantum memory to exploit the effect of cavity protection and achieve a much longer storage time. In particular, for a spin ensemble with a Lorentzian spectral distribution, our calculations demonstrate that continuous dynamical decoupling has the potential to improve its storage time by orders of magnitude for the state-of-art experimental parameters

    Integral field spectroscopy of nearby QSOs II. The molecular gas content and condition for star formation

    Get PDF
    We present single-dish 12CO(1 − 0) and 12CO(2 − 1) observations for 14 low-redshift quasi-stellar objects (QSOs). In combination with optical integral field spectroscopy we study how the cold gas content relates to the star formation rate (SFR) and black hole accretion rate. 12CO(1 − 0) is detected in 8 of 14 targets and 12CO(2 − 1) is detected in 7 out of 11 cases. The majority of disc-dominated QSOs reveal gas fractions and depletion times well matching normal star forming systems. Two gas-rich major mergers show clear starburst signatures with higher than average gas fractions and shorter depletion times. Bulge-dominated QSO hosts are mainly undetected in 12CO(1 − 0) which corresponds, on average, to lower gas fractions than in disc-dominated counterparts. Their SFRs however imply shorter than average depletion times and higher star formation efficiencies. Negative QSO feedback through removal of cold gas seems to play a negligible role in our sample. We find a trend between black hole accretion rate and total molecular gas content for disc-dominated QSOs when combined with literature samples. We interpret this as an upper envelope for the nuclear activity and is well represented by a scaling relation between the total and circum-nuclear gas reservoir accessible for accretion. Bulge-dominated QSOs significantly differ from that scaling relation and appear uncorrelated with the total molecular gas content. This could be explained either by a more compact gas reservoir, blow out of the gas envelope through outflows, or a different ISM phase composition

    Nanodiamonds carrying quantum emitters with almost lifetime-limited linewidths

    Get PDF
    Nanodiamonds (NDs) hosting optically active defects are an important technical material for applications in quantum sensing, biological imaging, and quantum optics. The negatively charged silicon vacancy (SiV) defect is known to fluoresce in molecular sized NDs (1 to 6 nm) and its spectral properties depend on the quality of the surrounding host lattice. This defect is therefore a good probe to investigate the material properties of small NDs. Here we report unprecedented narrow optical transitions for SiV colour centers hosted in nanodiamonds produced using a novel high-pressure high-temperature (HPHT) technique. The SiV zero-phonon lines were measured to have an inhomogeneous distribution of 1.05 nm at 5 K across a sample of numerous NDs. Individual spectral lines as narrow as 354 MHz were measured for SiV centres in nanodiamonds smaller than 200 nm, which is four times narrower than the best SiV line previously reported for nanodiamonds. Correcting for apparent spectral diffusion yielded a homogeneous linewith of about 200 MHz, which is close to the width limit imposed by the radiative lifetime. These results demonstrate that the direct HPHT synthesis technique is capable of producing nanodiamonds with high crystal lattice quality, which are therefore a valuable technical material

    The merging/AGN connection: A case for 3D spectroscopy

    Full text link
    We discuss an ongoing study of the connection between galaxy merging/interaction and AGN activity, based on integral field spectroscopy. We focus on the search for AGN ionization in the central regions of mergers, previously not classified as AGNs. We present here the science case, the current status of the project, and plans for future observations.Comment: 4 pages, 3 figure, Euro3D Science Workshop, Cambridge, May 2003, AN, accepte

    Influence of Coulomb and Phonon Interaction on the Exciton Formation Dynamics in Semiconductor Heterostructures

    Full text link
    A microscopic theory is developed to analyze the dynamics of exciton formation out of incoherent carriers in semiconductor heterostructures. The carrier Coulomb and phonon interaction is included consistently. A cluster expansion method is used to systematically truncate the hierarchy problem. By including all correlations up to the four-point (i.e. two-particle) level, the fundamental fermionic substructure of excitons is fully included. The analysis shows that the exciton formation is an intricate process where Coulomb correlations rapidly build up on a picosecond time scale while phonon dynamics leads to true exciton formation on a slow nanosecond time scale.Comment: 18 pages, 7 figure
    corecore