730 research outputs found
Optimization and fabrication of porous carbon electrodes for Fe/Cr redox flow cells
Negative electrode development for the NASA chromous/ferric Redox battery is reported. The effects of substrate material, gold/lead catalyst composition and loading, and catalyzation procedures on the performance of the chromium electrode were investigated. Three alternative catalyst systems were also examined, and 1/3 square foot size electrodes were fabricated and delivered to NASA at the conclusion of the program
Random matrix analysis of complex networks
We study complex networks under random matrix theory (RMT) framework. Using
nearest-neighbor and next-nearest-neighbor spacing distributions we analyze the
eigenvalues of adjacency matrix of various model networks, namely, random,
scale-free and small-world networks. These distributions follow Gaussian
orthogonal ensemble statistic of RMT. To probe long-range correlations in the
eigenvalues we study spectral rigidity via statistic of RMT as well.
It follows RMT prediction of linear behavior in semi-logarithmic scale with
slope being . Random and scale-free networks follow RMT
prediction for very large scale. Small-world network follows it for
sufficiently large scale, but much less than the random and scale-free
networks.Comment: accepted in Phys. Rev. E (replaced with the final version
Spectral analysis of Gene co-expression network of Zebrafish
We analyze the gene expression data of Zebrafish under the combined framework
of complex networks and random matrix theory. The nearest neighbor spacing
distribution of the corresponding matrix spectra follows random matrix
predictions of Gaussian orthogonal statistics. Based on the eigenvector
analysis we can divide the spectra into two parts, first part for which the
eigenvector localization properties match with the random matrix theory
predictions, and the second part for which they show deviation from the theory
and hence are useful to understand the system dependent properties. Spectra
with the localized eigenvectors can be characterized into three groups based on
the eigenvalues. We explore the position of localized nodes from these
different categories. Using an overlap measure, we find that the top
contributing nodes in the different groups carry distinguished structural
features. Furthermore, the top contributing nodes of the different localized
eigenvectors corresponding to the lower eigenvalue regime form different
densely connected structure well separated from each other. Preliminary
biological interpretation of the genes, associated with the top contributing
nodes in the localized eigenvectors, suggests that the genes corresponding to
same vector share common features.Comment: 6 pages, four figures (accepted in EPL
Phase separation in coupled chaotic maps on fractal networks
The phase ordering dynamics of coupled chaotic maps on fractal networks are
investigated. The statistical properties of the systems are characterized by
means of the persistence probability of equivalent spin variables that define
the phases. The persistence saturates and phase domains freeze for all values
of the coupling parameter as a consequence of the fractal structure of the
networks, in contrast to the phase transition behavior previously observed in
regular Euclidean lattices. Several discontinuities and other features found in
the saturation persistence curve as a function of the coupling are explained in
terms of changes of stability of local phase configurations on the fractals.Comment: (4 pages, 4 Figs, Submitted to PRE
Acute-on-chronic liver failure in cirrhosis
The definition of acute-on-chronic liver failure (ACLF) remains contested. In Europe and North America, the term is generally applied according to the European Association for the Study of the Liver-Chronic Liver Failure (EASL-CLIF) Consortium guidelines, which defines this condition as a syndrome that develops in patients with cirrhosis and is characterized by acute decompensation, organ failure and high short-term mortality. One-third of patients who are hospitalized for acute decompensation present with ACLF at admission or develop the syndrome during hospitalization. ACLF frequently occurs in a closed temporal relationship to a precipitating event, such as bacterial infection or acute alcoholic, drug-induced or viral hepatitis. However, no precipitating event can be identified in approximately 40% of patients. The mechanisms of ACLF involve systemic inflammation due to infections, acute liver damage and, in cases without precipitating events, probably intestinal translocation of bacteria or bacterial products. ACLF is graded into three stages (ACLF grades 1–3) on the basis of the number of organ failures, with higher grades associated with increased mortality. Liver and renal failures are the most common organ failures, followed by coagulation, brain, circulatory and respiratory failure. The 28-day mortality rate associated with ACLF is 30%. Depending on the grade, ACLF can be reversed using standard therapy in only 16–51% of patients, leaving a considerable proportion of patients with ACLF that remains steady or progresses. Liver transplantation in selected patients with ACLF grade 2 and ACLF grade 3 increases the 6-month survival from 10% to 80%
Modification in CSF specific gravity in acutely decompensated cirrhosis and acute on chronic liver failure independent of encephalopathy, evidences for an early blood-CSF barrier dysfunction in cirrhosis
Although hepatic encephalopathy (HE) on the background of acute on chronic liver failure (ACLF) is associated with high mortality rates, it is unknown whether this is due to increased blood-brain barrier permeability. Specific gravity of cerebrospinal fluid measured by CT is able to estimate blood-cerebrospinal fluid-barrier permeability. This study aimed to assess cerebrospinal fluid specific gravity in acutely decompensated cirrhosis and to compare it in patients with or without ACLF and with or without hepatic encephalopathy. We identified all the patients admitted for acute decompensation of cirrhosis who underwent a brain CT-scan. Those patients could present acute decompensation with or without ACLF. The presence of hepatic encephalopathy was noted. They were compared to a group of stable cirrhotic patients and healthy controls. Quantitative brain CT analysis used the Brainview software that gives the weight, the volume and the specific gravity of each determined brain regions. Results are given as median and interquartile ranges and as relative variation compared to the control/baseline group. 36 patients presented an acute decompensation of cirrhosis. Among them, 25 presented with ACLF and 11 without ACLF; 20 presented with hepatic encephalopathy grade ≥ 2. They were compared to 31 stable cirrhosis patients and 61 healthy controls. Cirrhotic patients had increased cerebrospinal fluid specific gravity (CSF-SG) compared to healthy controls (+0.4 %, p < 0.0001). Cirrhotic patients with ACLF have decreased CSF-SG as compared to cirrhotic patients without ACLF (−0.2 %, p = 0.0030) that remained higher than in healthy controls. The presence of hepatic encephalopathy did not modify CSF-SG (−0.09 %, p = 0.1757). Specific gravity did not differ between different brain regions according to the presence or absence of either ACLF or HE. In patients with acute decompensation of cirrhosis, and those with ACLF, CSF specific gravity is modified compared to both stable cirrhotic patients and healthy controls. This pattern is observed even in the absence of hepatic encephalopathy suggesting that blood-CSF barrier impairment is manifest even in absence of overt hepatic encephalopathy
Complex transitions to synchronization in delay-coupled networks of logistic maps
A network of delay-coupled logistic maps exhibits two different
synchronization regimes, depending on the distribution of the coupling delay
times. When the delays are homogeneous throughout the network, the network
synchronizes to a time-dependent state [Atay et al., Phys. Rev. Lett. 92,
144101 (2004)], which may be periodic or chaotic depending on the delay; when
the delays are sufficiently heterogeneous, the synchronization proceeds to a
steady-state, which is unstable for the uncoupled map [Masoller and Marti,
Phys. Rev. Lett. 94, 134102 (2005)]. Here we characterize the transition from
time-dependent to steady-state synchronization as the width of the delay
distribution increases. We also compare the two transitions to synchronization
as the coupling strength increases. We use transition probabilities calculated
via symbolic analysis and ordinal patterns. We find that, as the coupling
strength increases, before the onset of steady-state synchronization the
network splits into two clusters which are in anti-phase relation with each
other. On the other hand, with increasing delay heterogeneity, no cluster
formation is seen at the onset of steady-state synchronization; however, a
rather complex unsynchronized state is detected, revealed by a diversity of
transition probabilities in the network nodes
Extracorporeal liver support devices in the ICU
Liver failure is common and carries high morbidity and mortality. Liver transplantation (LT) is the only definitive treatment available performed as an emergency in acute liver failure and electively for chronic liver disease. In the last 50 years, a number of extracorporeal liver support devices and modifications have emerged , some of them purely mechanical in nature aimed at detoxification, while others are cell based systems possessing bio-transformational capability. Mechanical devices are mainly based on albumin dialysis, albumin being a key transporter protein that is severely deficient and irreversibly destroyed in liver diseases. Despite a sound scientific rationale and good safety profile, none of the currently available devices have shown enough promise to be incorporated in routine clinical practice, their use being limited to specific clinical situations. This chapter describes currently available devices, their operational characteristics, current evidence of their utility and limitation, and the future developments in the field of extracorporeal liver support
Acute-on-Chronic Liver Failure: Definition, Diagnosis, and Clinical Characteristics
Acute-on-chronic liver failure (ACLF) is a recently recognized syndrome in cirrhosis characterized by acute decompensation (AD), organ failure(s), and high short-term mortality. Organ failure(s) is defined by the Chronic Liver Failure-Sequential Organ Failure (CLIF-SOFA) score or by its simplified version Chronic Liver Failure-Organ Failure Assessment (CLIF-OF) score. They include six types of organ failure: liver, renal, coagulation, cerebral, respiratory, and circulatory. One third of patients hospitalized with AD present with ACLF at admission or develop ACLF during hospitalization. Acute-on-chronic liver failure frequently occurs in a closed relationship to a precipitating event. According to the number of organ failures, ACLF is graded into three stages: ACLF-1 = single renal failure or single nonrenal organ failure if associated with renal dysfunction and/or cerebral dysfunction; ACLF-2 = two organ failures; and ACLF-3 = three to six organ failures, with increasing 28-day mortality rate (from 23%–74%). Acute-on-chronic liver failure may develop at any phase during the clinical course of the disease. Patients without prior AD develop a severe form of ACLF
- …
