837 research outputs found
A Holistic Approach to Log Data Analysis in High-Performance Computing Systems: The Case of IBM Blue Gene/Q
The complexity and cost of managing high-performance computing
infrastructures are on the rise. Automating management and repair through
predictive models to minimize human interventions is an attempt to increase
system availability and contain these costs. Building predictive models that
are accurate enough to be useful in automatic management cannot be based on
restricted log data from subsystems but requires a holistic approach to data
analysis from disparate sources. Here we provide a detailed multi-scale
characterization study based on four datasets reporting power consumption,
temperature, workload, and hardware/software events for an IBM Blue Gene/Q
installation. We show that the system runs a rich parallel workload, with low
correlation among its components in terms of temperature and power, but higher
correlation in terms of events. As expected, power and temperature correlate
strongly, while events display negative correlations with load and power. Power
and workload show moderate correlations, and only at the scale of components.
The aim of the study is a systematic, integrated characterization of the
computing infrastructure and discovery of correlation sources and levels to
serve as basis for future predictive modeling efforts.Comment: 12 pages, 7 Figure
The Potential for Machine Learning Analysis over Encrypted Data in Cloud-based Clinical Decision Support - Background and Review
This paper appeared at the 8th Australasian Workshop on Health Informatics and Knowledge Management (HIKM 2015), Sydney, Australia, January 2015. Conferences in Research and Practice in Information Technology (CRPIT), Vol. 164, Anthony Maeder and Jim Warren, Ed. Reproduction for academic, not-for profit purposes permitted provided this text is includedIn an effort to reduce the risk of sensitive data exposure in untrusted networks such as the public cloud, increasing attention has recently been given to encryption schemes that allow specific computations to occur on encrypted data, without the need for decryption. This relies on the fact that some encryption algorithms display the property of homomorphism, which allows them to manipulate data in a meaningful way while still in encrypted form. Such a framework would find particular relevance in Clinical Decision Support (CDS) applications deployed in the public cloud. CDS applications have an important computational and analytical role over confidential healthcare information with the aim of supporting decision-making in clinical practice. This review paper examines the history and current status of homomoprhic encryption and its potential for preserving the privacy of patient data underpinning cloud-based CDS applications
A study of the time of hospital discharge of differentiated thyroid cancer patients after receiving iodine-131 for thyroid remnant ablation treatment
The aim of this study was to measure the radiation exposure rate from differentiated thyroid carcinoma (DTC) patients who had received iodine-131 (131I) treatment, and to evaluate hospital discharge planning in relation to three different sets of regulations. We studied 100 patients, 78 females and 22 males, aged 13 to 79 years (mean 44.40±15.83 years) with DTC, in three Groups who were treated with 3.7, 5.5 or 7.4GBq of 131I, respectively. The external whole-body dose rates following oral administration of 131I were measured after each one of the first three hospitalization days. A multivariant linear analysis was performed, considering exposure rates as dependent variables to the administered dose for treatment, age, gender, regional and/or distant metastases, thyroglobulin (Tg), antibodies to Tg and thyroid remnant in the three dose groups. We found that the exposure rates after each of the three first days of hospitalization were 30, 50 and 70μSvh-1 at 1m. All our DTC patients had an acceptable dose rate on days 2 and 3 that allowed their hospital discharge. After only 1 day of hospitalization, just 3/11 cases showed not permissible exposure rates above 70μSvh-1. In conclusion, it is the opinion of the authors that after measuring the exposure rates, most treated, DTC patients could be discharged after only one day of hospitalization, even some of those treated with high doses of 131I (7.4GBq). Patients, who received the higher doses of 131I, should not be released before their individual exposure rate is measured
Direct Fragmentation of Quarkonia Including Fermi Motion Using Light-cone Wave Function
We investigate the effect of Fermi motion on the direct fragmentation of the
and states employing a light-cone wave function. Consistent
with such a wave function we set up the kinematics of a heavy quark fragmenting
into a quarkonia such that the Fermi motion of the constituents split into
longitudinal as well as transverse direction and thus calculate the
fragmentation functions for these states. In the framework of our
investigation, we estimate that the fragmentation probabilities of and
may increase at least up to 14 percent when including this degree of
freedom.Comment: 7 pages 5 figures Appeared in EPJC; Fig 1 and Appendix revise
Preoperative 99mTc-sestamibi scintigraphy in patients with primary hyperparathyroidism and concomitant nodular goiter: Comparison of SPECT-CT, SPECT, and planar imaging
Background: Investigations using a hybrid single photon emission computed tomography/computed tomography (SPECT-CT) scanning technique have been carried out in limited studies and have shown mixed results. However, the assessment of this technique for the detection of parathyroid adenoma in patients with a nodular goiter was performed in only one study with a small sample size. The aim of this prospective study was to assess the role of Tc-sestamibi parathyroid SPECT-CT scans for localization of parathyroid adenomas with a concomitant nodular goiter using Tc-methoxyisobutyl isonitrile (MIBI) scintigraphy and to compare it with SPECT and planar imaging. Methods: This study was conducted on 48 patients with primary hyperparathyroidism and nodular goiter, who were candidates for parathyroid surgery and had been referred for parathyroid scintigraphy. The patients underwent an early set of planar Tc-MIBI scanning procedures first, followed by SPECT and CT scannings, and finally a delayed set of planar Tc-MIBI scannings. Sensitivity, specificity, negative and positive predictive values, and accuracy were determined on a per-parathyroid-gland basis for each scanning method, as defined by histology and follow-up. Results: The surgery was successful in 48 out of 50 patients with primary hyperparathyroidism concomitant with thyroid nodularity, and data were completed for 80 sites in 48 patients. The accuracy of SPECT-CT in correctly identifying a parathyroid adenoma was 85.00, versus 75.00% for SPECT (P=0.01, significant). The sensitivity and specificity for SPECT-CT were 77.55 and 96.77%, respectively, versus 67.34 and 87.09%, respectively, for SPECT (P=0.12 and 0.12, not significant). There were nine sites that showed better localization on SPECT-CT scans relative to SPECT images, of which five sites were located in the ectopic regions. Conclusion: The results of our study indicate that SPECT-CT is more accurate than sestamibi planar imaging and SPECT for the preoperative identification of parathyroid lesions in patients with primary hyperparathyroidism concomitant with thyroid nodularity. Also, we would recommend the use of SPECT-CT for a workup of all patients with ectopic glands who are scheduled for minimally invasive parathyroid surgery. © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins
Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide
Access to the electron spin is at the heart of many protocols for integrated
and distributed quantum-information processing [1-4]. For instance, interfacing
the spin-state of an electron and a photon can be utilized to perform quantum
gates between photons [2,5] or to entangle remote spin states [6-9].
Ultimately, a quantum network of entangled spins constitutes a new paradigm in
quantum optics [1]. Towards this goal, an integrated spin-photon interface
would be a major leap forward. Here we demonstrate an efficient and optically
programmable interface between the spin of an electron in a quantum dot and
photons in a nanophotonic waveguide. The spin can be deterministically prepared
with a fidelity of 96\%. Subsequently the system is used to implement a
"single-spin photonic switch", where the spin state of the electron directs the
flow of photons through the waveguide. The spin-photon interface may enable
on-chip photon-photon gates [2], single-photon transistors [10], and efficient
photonic cluster state generation [11]
Water abundances in high-mass protostellar envelopes: Herschel observations with HIFI
We derive the dense core structure and the water abundance in four massive
star-forming regions which may help understand the earliest stages of massive
star formation. We present Herschel-HIFI observations of the para-H2O 1_11-0_00
and 2_02-1_11 and the para-H2-18O 1_11-0_00 transitions. The envelope
contribution to the line profiles is separated from contributions by outflows
and foreground clouds. The envelope contribution is modelled using Monte-Carlo
radiative transfer codes for dust and molecular lines (MC3D and RATRAN), with
the water abundance and the turbulent velocity width as free parameters. While
the outflows are mostly seen in emission in high-J lines, envelopes are seen in
absorption in ground-state lines, which are almost saturated. The derived water
abundances range from 5E-10 to 4E-8 in the outer envelopes. We detect cold
clouds surrounding the protostar envelope, thanks to the very high quality of
the Herschel-HIFI data and the unique ability of water to probe them. Several
foreground clouds are also detected along the line of sight. The low H2O
abundances in massive dense cores are in accordance with the expectation that
high densities and low temperatures lead to freeze-out of water on dust grains.
The spread in abundance values is not clearly linked to physical properties of
the sources.Comment: 8 pages, 5 figures, accepted for publication the 15/07/2010 by
Astronomy&Astrophysics as a letter in the Herschel-HIFI special issu
Magneto-electrodynamics at high frequencies in the antiferromagnetic and superconducting states of DyNi_2B_2C
We report the observation of novel behaviour in the radio frequency (rf) and
microwave response of DyNi_2B_2C over a wide range of temperature (T) and
magnetic field (H) in the antiferromagnetic (AFM) and superconducting (SC)
states. At microwave frequencies of 10 GHz, the T dependence of the surface
impedance Z_s=R_s+iX_s was measured which yields the T dependence of the
complex conductivity \sigma_1-i\sigma_2 in the SC and AFM states. At radio
frequencies (4 MHz), the H and T dependence of the penetration depth
\lambda(T,H) were measured. The establishment of antiferromagnetic order at
T_N=10.3 K results in a marked decrease in the scattering of charge carriers,
leading to sharp decreases in R_s and X_s. However, R_s and X_s differ from
each other in the AFM state. We show that the results are consistent with
conductivity relaxation whence the scattering rate becomes comparable to the
microwave frequency. The rf measurements yield a rich dependence of the
scattering on the magnetic field near and below T_N. Anomalous decrease of
scattering at moderate applied fields is observed at temperatures near and
above T_N, and arises due to a crossover from a negative magnetoresistance
state, possibly associated with a loss of spin disorder scattering at low
fields, to a positive magnetoresistance state associated with the metallic
nature. The normal state magnetoresistance is positive at all temperatures for
\mu_0H>2T and at all fields for T>15K. Several characteristic field and
temperature scales associated with metamagnetic transitions (H_M1(T), H_M2(T))
and onset of spin disorder H_D(T), in addition to T_c, T_N and H_c2(T) are
observed in the rf measurements.Comment: 9 pages, Latex, Uses REVTeX, This and related publications also
available at http://sagar.physics.neu.edu/ Submitted to Phys. Rev.
A hierarchical key pre-distribution scheme for fog networks
Security in fog computing is multi-faceted, and one particular challenge is establishing a secure communication channel between fog nodes and end devices. This emphasizes the importance of designing efficient and secret key distribution scheme to facilitate fog nodes and end devices to establish secure communication channels. Existing secure key distribution schemes designed for hierarchical networks may be deployable in fog computing, but they incur high computational and communication overheads and thus consume significant memory. In this paper, we propose a novel hierarchical key pre-distribution scheme based on “Residual Design” for fog networks. The proposed key distribution scheme is designed to minimize storage overhead and memory consumption, while increasing network scalability. The scheme is also designed to be secure against node capture attacks. We demonstrate that in an equal-size network, our scheme achieves around 84% improvement in terms of node storage overhead, and around 96% improvement in terms of network scalability. Our research paves the way for building an efficient key management framework for secure communication within the hierarchical network of fog nodes and end devices.
KEYWORDS: Fog Computing, Key distribution, Hierarchical Networks
- …
