997 research outputs found

    High breakdown estimators to robustify phase II multivariate control charts.

    Get PDF
    Control chart is a statistical process control tool that is used to monitor the changes in a process. Hotelling's T2 chart is one of the most popular control charts for monitoring independently and identically distributed random vectors. This chart detects many types of out-of-control signals, but it is not sensitive to small shifts in the mean vector. This study propose a more efficient T2 control charts based on the re-weigted robust estimators of location and dispersion. The proposed control charts are attained by substituting the classical estimators of the mean vector and covariance matrix in the Hotelling's T2 by the re-weighted MCD and re-weighted MVE estimators. In this study, Monte Carlo simulations were carried out to establish the proposed robust control limit. Following that, we suggested suitable estimators for each condition. Our advice in this study is replacing the classical mean vector and covariance matrix of the data in the Hotelling's T2 statistic by there weighted MCD and Re-weighted MVE estimators

    Application of Suomi-NPP Green Vegetation Fraction and NUCAPS for Improving Regional Numerical Weather Prediction

    Get PDF
    The NASA SPoRT Center is working to incorporate SuomiNPP products into its research and transition activities to improve regional numerical weather prediction (NWP). Specifically, SPoRT seeks to utilize two data products from NOAA/NESDIS: (1) daily global VIIRS green vegetation fraction (GVF), and (2) NOAA Unique CrIS and ATMS Processing System (NUCAPS) temperature and moisture retrieved profiles. The goal of (1) is to improve the representation of vegetation in the Noah land surface model (LSM) over existing climatological GVF datasets in order to improve the landatmosphere energy exchanges in NWP models and produce better temperature, moisture, and precipitation forecasts. The goal of (2) is to assimilate NUCAPS retrieved profiles into the Gridpoint Statistical Interpolation (GSI) data assimilation system to assess the impact on a summer prefrontal convection case. Most regional NWP applications make use of a monthly GVF climatology for use in the Noah LSM within the Weather Research and Forecasting (WRF) model. The GVF partitions incoming energy into direct surface heating/evaporation over bare soil versus evapotranspiration processes over vegetated surfaces. Misrepresentations of the fractional coverage of vegetation during anomalous weather/climate regimes (e.g., early/late bloom or freeze; drought) can lead to poor NWP model results when landatmosphere feedback is important. SPoRT has been producing a daily MODIS GVF product based on the University of Wisconsin Direct Broadcast swaths of Normalized Difference Vegetation Index (NDVI). While positive impacts have been demonstrated in the WRF model for some cases, the reflectances composing these NDVI do not correct for atmospheric aerosols nor satellite view angle, resulting in temporal noisiness at certain locations (especially heavy vegetation). The method behind the NESDIS VIIRS GVF is expected to alleviate the issues seen in the MODIS GVF realtime product, thereby offering a higherquality dataset for modeling applications. SPoRT is evaluating the VIIRS GVF data against the MODIS realtime and climatology GVF in both WRF and the NASA Land Information System. SPoRT has a history of assimilating hyperspectral infrared retrieved profile

    NASA SPoRT Modeling and Data Assimilation Research and Transition Activities Using WRF, LIS and GSI

    Get PDF
    weather research and forecasting ===== The NASA Shortterm Prediction Research and Transition (SPoRT) program has numerous modeling and data assimilation (DA) activities in which the WRF model is a key component. SPoRT generates realtime, research satellite products from the MODIS and VIIRS instruments, making the data available to NOAA/NWS partners running the WRF/EMS, including: (1) 2km northwesternhemispheric SST composite, (2) daily, MODIS green vegetation fraction (GVF) over CONUS, and (3) NASA Land Information System (LIS) runs of the Noah LSM over the southeastern CONUS. Each of these datasets have been utilized by specific SPoRT partners in local EMS model runs, with select offices evaluating the impacts using a set of automated scripts developed by SPoRT that manage data acquisition and run the NCAR Model Evaluation Tools verification package. SPoRT is engaged in DA research with the Gridpoint Statistical Interpolation (GSI) and Ensemble Kalman Filter in LIS for soil moisture DA. Ongoing DA projects using GSI include comparing the impacts of assimilating Atmospheric Infrared Sounder (AIRS) radiances versus retrieved profiles, and an analysis of extratropical cyclones with intense nonconvective winds. As part of its Early Adopter activities for the NASA Soil Moisture Active Passive (SMAP) mission, SPoRT is conducting bias correction and soil moisture DA within LIS to improve simulations using the NASA UnifiedWRF (NUWRF) for both the European Space Agency's Soil Moisture Ocean Salinity and upcoming SMAP mission data. SPoRT has also incorporated realtime global GVF data into LIS and WRF from the VIIRS product being developed by NOAA/NESDIS. This poster will highlight the research and transition activities SPoRT conducts using WRF, NUWRF, EMS, LIS, and GSI

    Transitioning Enhanced Land Surface Initialization and Model Verification Capabilities to the Kenya Meteorological Department (KMD)

    Get PDF
    Flooding, severe weather, and drought are key forecasting challenges for the Kenya Meteorological Department (KMD), based in Nairobi, Kenya. Atmospheric processes leading to convection, excessive precipitation and/or prolonged drought can be strongly influenced by land cover, vegetation, and soil moisture content, especially during anomalous conditions and dry/wet seasonal transitions. It is thus important to represent accurately land surface state variables (green vegetation fraction, soil moisture, and soil temperature) in Numerical Weather Prediction (NWP) models. The NASA SERVIR and the Short-term Prediction Research and Transition (SPoRT) programs in Huntsville, AL have established a working partnership with KMD to enhance its regional modeling capabilities. SPoRT and SERVIR are providing experimental land surface initialization datasets and model verification capabilities for capacity building at KMD. To support its forecasting operations, KMD is running experimental configurations of the Weather Research and Forecasting (WRF; Skamarock et al. 2008) model on a 12-km/4-km nested regional domain over eastern Africa, incorporating the land surface datasets provided by NASA SPoRT and SERVIR. SPoRT, SERVIR, and KMD participated in two training sessions in March 2014 and June 2015 to foster the collaboration and use of unique land surface datasets and model verification capabilities. Enhanced regional modeling capabilities have the potential to improve guidance in support of daily operations and high-impact weather and climate outlooks over Eastern Africa. For enhanced land-surface initialization, the NASA Land Information System (LIS) is run over Eastern Africa at ~3-km resolution, providing real-time land surface initialization data in place of interpolated global model soil moisture and temperature data available at coarser resolutions. Additionally, real-time green vegetation fraction (GVF) composites from the Suomi-NPP VIIRS instrument is being incorporated into the KMD-WRF runs, using the product generated by NOAA/NESDIS. Model verification capabilities are also being transitioned to KMD using NCAR's Model *Corresponding author address: Jonathan Case, ENSCO, Inc., 320 Sparkman Dr., Room 3008, Huntsville, AL, 35805. Email: [email protected] Evaluation Tools (MET; Brown et al. 2009) software in conjunction with a SPoRT-developed scripting package, in order to quantify and compare errors in simulated temperature, moisture and precipitation in the experimental WRF model simulations. This extended abstract and accompanying presentation summarizes the efforts and training done to date to support this unique regional modeling initiative at KMD. To honor the memory of Dr. Peter J. Lamb and his extensive efforts in bolstering weather and climate science and capacity-building in Africa, we offer this contribution to the special Peter J. Lamb symposium. The remainder of this extended abstract is organized as follows. The collaborating international organizations involved in the project are presented in Section 2. Background information on the unique land surface input datasets is presented in Section 3. The hands-on training sessions from March 2014 and June 2015 are described in Section 4. Sample experimental WRF output and verification from the June 2015 training are given in Section 5. A summary is given in Section 6, followed by Acknowledgements and References

    Assimilation of GPM Retrieved Surface Meteorology Variables with ICE-POP Case Studies

    Get PDF
    Built upon Tropical Rainfall Measuring Mission (TRMM) legacy for next-generation global observation of rain and snow. The GPM has a broad global coverage ~70S 70N with a swath of 245/125-km for the Ka (35.5 GHz)/Ku (13.6 GHz) band radar, and 850-km for the 13-channel GMI. GPM also features better retrievals for heavy, moderate, and light rain and snowfall
    corecore