610 research outputs found
CoCaml: Functional Programming with Regular Coinductive Types
Functional languages offer a high level of abstraction, which results in programs that are elegant and easy to understand. Central to the development of functional programming are inductive and coinductive types and associated programming constructs, such as pattern-matching. Whereas inductive types have a long tradition and are well supported in most languages, coinductive types are subject of more recent research and are less mainstream.
We present CoCaml, a functional programming language extending OCaml, which allows us to define recursive functions on regular coinductive datatypes. These functions are defined like usual recursive functions, but parameterized by an equation solver. We present a full implementation of all the constructs and solvers and show how these can be used in a variety of examples, including operations on infinite lists, infinitary γ-terms, and p-adic numbers
Switzerland: National Trends in Sexual Behaviour in the Context of HIV/STI Behavioural Surveillance 1987–2012
Background: National trends in sexual behaviour have been assessed mainly in the context of the HIV related behavioural surveillance system set up in Switzerland between 1987 and 1992.
Methods: Several populations are included in the system. Repeatedsurveys have been regularly conducted among the general population and youth, men having sex with other men (MSM), injecting drug users (IDU). Data on sexual behaviour are regularly recorded among people living with HIV/Aids (PLWHA) included in the Swiss HIV Cohort
LISA ON TABLE: AN OPTICAL SIMULATOR FOR LISA
LISA, the first space project for detecting gravitational waves, relies on two main technical challenges: the free falling masses and an outstanding precision on phase shift measurements (a few pm on 5 Mkm in the LISA band). The technology of the free falling masses, i.e. their isolation to forces other than gravity and the capability for the spacecraft to precisely follow the test masses, will soon be tested with the technological LISA Pathfinder mission. The performance of the phase measurement will be achieved by at least two stabilization stages: a pre-stabilisation of the laser frequency at a level of 10-13 (relative frequency stability) will be further improved by using numerical algorithms, such as Time Delay Interferometry, which have been theoretically and numerically demonstrated to reach the required performance level (10-21). Nevertheless, these algorithms, though already tested with numerical model of LISA, require experimental validation, including 'realistic' hardware elements. Such an experiment would allow to evaluate the expected noise level and the possible interactions between subsystems. To this end, the APC is currently developing an optical benchtop experiment, called LISA On Table (LOT), which is representative of the three LISA spacecraft. A first module of the LOT experiment has been mounted and is being characterized. After completion this facility may be used by the LISA community to test hardware (photodiodes, phasemeters) or software (reconstruction algorithms) components
Towards Physical Hybrid Systems
Some hybrid systems models are unsafe for mathematically correct but
physically unrealistic reasons. For example, mathematical models can classify a
system as being unsafe on a set that is too small to have physical importance.
In particular, differences in measure zero sets in models of cyber-physical
systems (CPS) have significant mathematical impact on the mathematical safety
of these models even though differences on measure zero sets have no tangible
physical effect in a real system. We develop the concept of "physical hybrid
systems" (PHS) to help reunite mathematical models with physical reality. We
modify a hybrid systems logic (differential temporal dynamic logic) by adding a
first-class operator to elide distinctions on measure zero sets of time within
CPS models. This approach facilitates modeling since it admits the verification
of a wider class of models, including some physically realistic models that
would otherwise be classified as mathematically unsafe. We also develop a proof
calculus to help with the verification of PHS.Comment: CADE 201
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Deep neural networks have emerged as a widely used and effective means for
tackling complex, real-world problems. However, a major obstacle in applying
them to safety-critical systems is the great difficulty in providing formal
guarantees about their behavior. We present a novel, scalable, and efficient
technique for verifying properties of deep neural networks (or providing
counter-examples). The technique is based on the simplex method, extended to
handle the non-convex Rectified Linear Unit (ReLU) activation function, which
is a crucial ingredient in many modern neural networks. The verification
procedure tackles neural networks as a whole, without making any simplifying
assumptions. We evaluated our technique on a prototype deep neural network
implementation of the next-generation airborne collision avoidance system for
unmanned aircraft (ACAS Xu). Results show that our technique can successfully
prove properties of networks that are an order of magnitude larger than the
largest networks verified using existing methods.Comment: This is the extended version of a paper with the same title that
appeared at CAV 201
Mapping HIV-related behavioural surveillance among injecting drug users in Europe, 2008.
The systematic collection of behavioural information is an important component of second-generation HIV surveillance. The extent of behavioural surveillance among injecting drug users (IDUs) in Europe was examined using data collected through a questionnaire sent to all 31 countries of the European Union and European Free Trade Association as part of a European-wide behavioural surveillance mapping study on HIV and other sexually transmitted infections. The questionnaire was returned by 28 countries during August to September 2008: 16 reported behavioural surveillance studies (two provided no further details). A total of 12 countries used repeated surveys for behavioural surveillance and five used their Treatment Demand Indicator system (three used both approaches). The data collected focused on drug use, injecting practices, testing for HIV and hepatitis C virus and access to healthcare. Eight countries had set national indicators: three indicators were each reported by five countries: the sharing any injecting equipment, uptake of HIV testing and uptake of hepatitis C virus testing. The recall periods used varied. Seven countries reported conducting one-off behavioural surveys (in one country without a repeated survey, these resulted an informal surveillance structure). All countries used convenience sampling, with service-based recruitment being the most common approach. Four countries had used respondent-driven sampling. Three fifths of the countries responding (18/28) reported behavioural surveillance activities among IDUs; however, harmonisation of behavioural surveillance indicators is needed
Report on the first round of the Mock LISA Data Challenges
The Mock LISA Data Challenges (MLDCs) have the dual purpose of fostering the
development of LISA data analysis tools and capabilities, and demonstrating the
technical readiness already achieved by the gravitational-wave community in
distilling a rich science payoff from the LISA data output. The first round of
MLDCs has just been completed: nine data sets containing simulated
gravitational wave signals produced either by galactic binaries or massive
black hole binaries embedded in simulated LISA instrumental noise were released
in June 2006 with deadline for submission of results at the beginning of
December 2006. Ten groups have participated in this first round of challenges.
Here we describe the challenges, summarise the results, and provide a first
critical assessment of the entries.Comment: Proceedings report from GWDAW 11. Added author, added reference,
clarified some text, removed typos. Results unchanged; Removed author, minor
edits, reflects submitted versio
Association of MC1R Variants and host phenotypes with melanoma risk in CDKN2A mutation carriers: a GenoMEL study
<p><b>Background</b> Carrying the cyclin-dependent kinase inhibitor 2A (CDKN2A) germline mutations is associated with a high risk for melanoma. Penetrance of CDKN2A mutations is modified by pigmentation characteristics, nevus phenotypes, and some variants of the melanocortin-1 receptor gene (MC1R), which is known to have a role in the pigmentation process. However, investigation of the associations of both MC1R variants and host phenotypes with melanoma risk has been limited.</p>
<p><b>Methods</b> We included 815 CDKN2A mutation carriers (473 affected, and 342 unaffected, with melanoma) from 186 families from 15 centers in Europe, North America, and Australia who participated in the Melanoma Genetics Consortium. In this family-based study, we assessed the associations of the four most frequent MC1R variants (V60L, V92M, R151C, and R160W) and the number of variants (1, ≥2 variants), alone or jointly with the host phenotypes (hair color, propensity to sunburn, and number of nevi), with melanoma risk in CDKN2A mutation carriers. These associations were estimated and tested using generalized estimating equations. All statistical tests were two-sided.</p>
<p><b>Results</b> Carrying any one of the four most frequent MC1R variants (V60L, V92M, R151C, R160W) in CDKN2A mutation carriers was associated with a statistically significantly increased risk for melanoma across all continents (1.24 × 10−6 ≤ P ≤ .0007). A consistent pattern of increase in melanoma risk was also associated with increase in number of MC1R variants. The risk of melanoma associated with at least two MC1R variants was 2.6-fold higher than the risk associated with only one variant (odds ratio = 5.83 [95% confidence interval = 3.60 to 9.46] vs 2.25 [95% confidence interval = 1.44 to 3.52]; Ptrend = 1.86 × 10−8). The joint analysis of MC1R variants and host phenotypes showed statistically significant associations of melanoma risk, together with MC1R variants (.0001 ≤ P ≤ .04), hair color (.006 ≤ P ≤ .06), and number of nevi (6.9 × 10−6 ≤ P ≤ .02).</p>
<p><b>Conclusion</b> Results show that MC1R variants, hair color, and number of nevi were jointly associated with melanoma risk in CDKN2A mutation carriers. This joint association may have important consequences for risk assessments in familial settings.</p>
Tissue Engineering for Periodontal Ligament Regeneration: Biomechanical Specifications
The periodontal biomechanical environment is very difficult to investigate.
By the complex geometry and composition of the periodontal ligament, its
mechanical behavior is very dependent on the type of loading (compressive vs.
tensile loading; static vs. cyclic loading; uniaxial vs. multiaxial) and the
location around the root (cervical, middle, or apical). These different aspects
of the periodontal ligament make it difficult to develop a functional
biomaterial to treat periodontal attachment due to periodontal diseases. This
review aims to describe the structural and biomechanical properties of the
periodontal ligament. Particular importance is placed in the close
interrelationship that exists between structure and biomechanics: the
periodontal ligament structural organization is specific to its biomechanical
environment, and its biomechanical properties are specific to its structural
arrangement. This balance between structure and biomechanics can be explained
by a mechanosensitive periodontal cellular activity. These specifications have
to be considered in the further tissue engineering strategies for the
development of an efficient biomaterial for periodontal tissues regeneration
From laboratory experiments to LISA Pathfinder: achieving LISA geodesic motion
International audienceThis paper presents a quantitative assessment of the performance of the upcoming LISA Pathfinder geodesic explorer mission. The findings are based on the results of extensive ground testing and simulation campaigns using flight hardware and flight control and operations algorithms. The results show that, for the central experiment of measuring the stray differential acceleration between the LISA test masses, LISA Pathfinder will be able to verify the overall acceleration noise to within a factor two of the LISA requirement at 1 mHz and within a factor 10 at 0.1 mHz. We also discuss the key elements of the physical model of disturbances, coming from LISA Pathfinder and ground measurement, that will guarantee the LISA performance
- …
