8,767 research outputs found
Submillimeter Atmospheric Transparency at Maunakea, at the South Pole, and at Chajnantor
For a systematic assessment of submillimeter observing conditions at
different sites, we constructed tipping radiometers to measure the broad band
atmospheric transparency in the window around 350 m wavelength. The
tippers were deployed on Maunakea, Hawaii, at the South Pole, and in the
vicinity of Cerro Chajnantor in northern Chile. Identical instruments permit
direct comparison of these sites. Observing conditions at the South Pole and in
the Chajnantor area are better than on Maunakea. Simultaneous measurements with
two tippers demonstrate conditions at the summit of Cerro Chajnantor are
significantly better than on the Chajnantor plateau.Comment: Accepted by PAS
Contralateral inhibition of click- and chirp-evoked human compound action potentials
Cochlear outer hair cells (OHC) receive direct efferent feedback from the caudal auditory brainstem via the medial olivocochlear (MOC) bundle. This circuit provides the neural substrate for the MOC reflex, which inhibits cochlear amplifier gain and is believed to play a role in listening in noise and protection from acoustic overexposure. The human MOC reflex has been studied extensively using otoacoustic emissions (OAE) paradigms; however, these measurements are insensitive to subsequent “downstream” efferent effects on the neural ensembles that mediate hearing. In this experiment, click- and chirp-evoked auditory nerve compound action potential (CAP) amplitudes were measured electrocochleographically from the human eardrum without and with MOC reflex activation elicited by contralateral broadband noise. We hypothesized that the chirp would be a more optimal stimulus for measuring neural MOC effects because it synchronizes excitation along the entire length of the basilar membrane and thus evokes a more robust CAP than a click at low to moderate stimulus levels. Chirps produced larger CAPs than clicks at all stimulus intensities (50–80 dB ppeSPL). MOC reflex inhibition of CAPs was larger for chirps than clicks at low stimulus levels when quantified both in terms of amplitude reduction and effective attenuation. Effective attenuation was larger for chirp- and click-evoked CAPs than for click-evoked OAEs measured from the same subjects. Our results suggest that the chirp is an optimal stimulus for evoking CAPs at low stimulus intensities and for assessing MOC reflex effects on the auditory nerve. Further, our work supports previous findings that MOC reflex effects at the level of the auditory nerve are underestimated by measures of OAE inhibition
Recommended from our members
Cousins Photometry and Temperatures for the Hyades, Coma, NGC 752, Praesepe, and M67
In this paper, new Cousins VRI data are presented for NGC 752 and Praesepe, and new and extant data are combined into an augmented database for M67. For those three clusters, catalogs containing Cousins VRI photometry, reddening-corrected values of (V -K)(J), and temperatures are produced. The same is done for Coma by using both previously published and newly derived Cousins photometry. An extant set of catalogs for the Hyades is updated to include V magnitudes and values of (R -I)(C) that were published after the original catalogs appeared. Finally, M67 V magnitudes published previously by Sandquist are corrected for an effect that depends on location on the face of the cluster. The corrected data and values of (V -I)(C) given by Sandquist are then set out in a supplementary catalog. Data files containing all of these catalogs are deposited in the CDS archives. To assess the quality of the data in the catalogs, the consistency of extant Cousins VRI databases is tested by performing analyses with the following features: (1) quantities as small as a few millimags are regarded as meaningful; (2) statistical analysis is applied; (3) no use is made of data other than VRI measurements and comparable results; (4) no inferences are drawn from color-magnitude comparisons; (5) pertinent data that have not been included previously are analyzed; and (6) results based on direct comparisons of stellar groups at the telescope are featured. In this way, it is found that our updated M67 color data and those of Sandquist are on the E region zero point. In contrast, values of (V -I)(C) from Montgomery and collaborators are found to be too red by 27 +/- 3 mmag, with an even larger offset being likely for unpublished data from Richer and his collaborators. Zero-point tests of our Cousins VRI colors for Coma, Praesepe, and NGC 752 are also satisfactory. Scale factor tests of the M67 colors are performed, and a likely scale factor error in the Montgomery et al. colors is found. However, it appears at present that the scale factors of our M67 colors and those of Sandquist are satisfactory. For the most part, zero-point tests of the assembled V magnitudes are also satisfactory, although it is found that further work on the V magnitudes for Praesepe and M67 would be useful. To put these results in perspective, it is pointed out that photometric tests that are satisfactory at the few-millimag level have been published for some two decades and so are not appearing for the first time in this paper.Astronom
Repetitive Delone Sets and Quasicrystals
This paper considers the problem of characterizing the simplest discrete
point sets that are aperiodic, using invariants based on topological dynamics.
A Delone set whose patch-counting function N(T), for radius T, is finite for
all T is called repetitive if there is a function M(T) such that every ball of
radius M(T)+T contains a copy of each kind of patch of radius T that occurs in
the set. This is equivalent to the minimality of an associated topological
dynamical system with R^n-action. There is a lower bound for M(T) in terms of
N(T), namely N(T) = O(M(T)^n), but no general upper bound.
The complexity of a repetitive Delone set can be measured by the growth rate
of its repetitivity function M(T). For example, M(T) is bounded if and only if
the set is a crystal. A set is called is linearly repetitive if M(T) = O(T) and
densely repetitive if M(T) = O(N(T))^{1/n}). We show that linearly repetitive
sets and densely repetitive sets have strict uniform patch frequencies, i.e.
the associated topological dynamical system is strictly ergodic. It follows
that such sets are diffractive. In the reverse direction, we construct a
repetitive Delone set in R^n which has
M(T) = O(T(log T)^{2/n}(log log log T)^{4/n}), but does not have uniform
patch frequencies. Aperiodic linearly repetitive sets have many claims to be
the simplest class of aperiodic sets, and we propose considering them as a
notion of "perfectly ordered quasicrystal".Comment: To appear in "Ergodic Theory and Dynamical Systems" vol.23 (2003). 37
pages. Uses packages latexsym, ifthen, cite and files amssym.def, amssym.te
Assessment of cockpit interface concepts for data link retrofit
The problem is examined of retrofitting older generation aircraft with data link capability. The approach taken analyzes requirements for the cockpit interface, based on review of prior research and opinions obtained from subject matter experts. With this background, essential functions and constraints for a retrofit installation are defined. After an assessment of the technology available to meet the functions and constraints, candidate design concepts are developed. The most promising design concept is described in detail. Finally, needs for further research and development are identified
Implementing the WHO Recommendations whilst Avoiding Real, Perceived or Potential Conflicts of Interest
Medical Implications of Space Radiation Exposure Due to Low Altitude Polar Orbits
Space radiation research has progressed rapidly in recent years, but there
remain large uncertainties in predicting and extrapolating biological responses
to humans. Exposure to cosmic radiation and Solar Particle Events may pose a
critical health risk to future spaceflight crews and can have a serious impact
to all biomedical aspects of space exploration. The relatively minimal
shielding of the cancelled 1960's Manned Orbiting Laboratory program's space
vehicle and the high inclination polar orbits would have left the crew
susceptible to high exposures of cosmic radiation and high dose-rate SPEs that
are mostly unpredictable in frequency and intensity. In this study, we have
modeled the nominal and off-nominal radiation environment that a MOL-like
spacecraft vehicle would be exposed to during a 30-day mission using high
performance, multi-core computers. Projected doses from a historically large
SPE (e.g. the August 1972 solar event) have been analyzed in the context of the
MOL orbit profile, providing an opportunity to study its impact to crew health
and subsequent contingencies.It is reasonable to presume that future
commercial, government, and military spaceflight missions in low-Earth orbit
will have vehicles with similar shielding and orbital profiles. Studying the
impact of cosmic radiation to the mission's operational integrity and the
health of MOL crewmembers provides an excellent surrogate and case-study for
future commercial and military spaceflight missions.Comment: 6 pages, 4 figures, 2 table
Possible Stellar Metallicity Enhancements from the Accretion of Planets
A number of recently discovered extrasolar planet candidates have
surprisingly small orbits, which may indicate that considerable orbital
migration takes place in protoplanetary systems. A natural consequence of
orbital migration is for a series of planets to be accreted, destroyed, and
then thoroughly mixed into the convective envelope of the central star. We
study the ramifications of planet accretion for the final main sequence
metallicity of the star. If maximum disk lifetimes are on the order of 10 Myr,
stars with masses near 1 solar mass are predicted to have virtually no
metallicity enhancement. On the other hand, early F and late A type stars with
masses of 1.5--2.0 solar masses can experience significant metallicity
enhancements due to their considerably smaller convection zones during the
first 10 Myr of pre-main-sequence evolution. We show that the metallicities of
an aggregate of unevolved F stars are consistent with an average star accreting
about 2 Jupiter-mass planets from a protoplanetary disk having a 10 Myr
dispersal time.Comment: 14 pages, AAS LaTeX, 3 figures, accepted to ApJ Letter
- …
