6,658 research outputs found

    Piezoviscous effects in nonconformal contacts lubricated hydrodynamically

    Get PDF
    The analysis is concerned with the piezoviscous-rigid regime of lubrication for the general case of elliptical contacts. In this regime several formulas of the lubricant film thickness have been proposed by Hamrock and Dowson, by Dowson et al., and more recently by Houpert. However, either they do not include the load parameter W, which has a strong effect on film thickness, or they overestimate the film thickness by using the Barus formula for pressure-viscosity characteristics. The Roelands formula was used for the pressure-viscosity relationship. The effects of the dimensionless load, speed, and materials parameters, the radius ratio, and the lubricant entrainment direction were investigated. The dimensionless load parameter was varied over a range of one order of magnitude. The dimensionless speed parameter was varied by 5.6 times the lowest value. Conditions corresponding to the use of solid materials of steel, bronze, and silicon nitride and lubricants of paraffinic and naphthenic mineral oil were considered in obtaining the exponent in the dimensionless materials parameter. The radius ratio was varied from 0.2 to 64 (a configuration approaching a line contact). Forty-one cases were used in obtaining a minimum film thickness formula. Contour plots indicate in detail the pressure developed between the contacting solids

    Tool for Sizing Analysis of the Advanced Life Support System

    Get PDF
    Advanced Life Support Sizing Analysis Tool (ALSSAT) is a computer model for sizing and analyzing designs of environmental-control and life support systems (ECLSS) for spacecraft and surface habitats involved in the exploration of Mars and Moon. It performs conceptual designs of advanced life support (ALS) subsystems that utilize physicochemical and biological processes to recycle air and water, and process wastes in order to reduce the need of resource resupply. By assuming steady-state operations, ALSSAT is a means of investigating combinations of such subsystems technologies and thereby assisting in determining the most cost-effective technology combination available. In fact, ALSSAT can perform sizing analysis of the ALS subsystems that are operated dynamically or steady in nature. Using the Microsoft Excel spreadsheet software with Visual Basic programming language, ALSSAT has been developed to perform multiple-case trade studies based on the calculated ECLSS mass, volume, power, and Equivalent System Mass, as well as parametric studies by varying the input parameters. ALSSAT s modular format is specifically designed for the ease of future maintenance and upgrades

    Mott-Kondo Insulator Behavior in the Iron Oxychalcogenides

    Full text link
    We perform a combined experimental-theoretical study of the Fe-oxychalcogenides (FeOCh\emph{Ch}) series La2_{2}O2_{2}Fe2_{2}O\emph{M}2_{2} (\emph{M}=S, Se), which is the latest among the Fe-based materials with the potential \ to show unconventional high-Tc_{c} superconductivity (HTSC). A combination of incoherent Hubbard features in X-ray absorption (XAS) and resonant inelastic X-ray scattering (RIXS) spectra, as well as resitivity data, reveal that the parent FeOCh\emph{Ch} are correlation-driven insulators. To uncover microscopics underlying these findings, we perform local density approximation-plus-dynamical mean field theory (LDA+DMFT) calculations that unravel a Mott-Kondo insulating state. Based upon good agreement between theory and a range of data, we propose that FeOCh\emph{Ch} may constitute a new, ideal testing ground to explore HTSC arising from a strange metal proximate to a novel selective-Mott quantum criticality

    Vacancy localization in the square dimer model

    Get PDF
    We study the classical dimer model on a square lattice with a single vacancy by developing a graph-theoretic classification of the set of all configurations which extends the spanning tree formulation of close-packed dimers. With this formalism, we can address the question of the possible motion of the vacancy induced by dimer slidings. We find a probability 57/4-10Sqrt[2] for the vacancy to be strictly jammed in an infinite system. More generally, the size distribution of the domain accessible to the vacancy is characterized by a power law decay with exponent 9/8. On a finite system, the probability that a vacancy in the bulk can reach the boundary falls off as a power law of the system size with exponent 1/4. The resultant weak localization of vacancies still allows for unbounded diffusion, characterized by a diffusion exponent that we relate to that of diffusion on spanning trees. We also implement numerical simulations of the model with both free and periodic boundary conditions.Comment: 35 pages, 24 figures. Improved version with one added figure (figure 9), a shift s->s+1 in the definition of the tree size, and minor correction

    Modelling of flow around hexagonal and textured cylinders

    Get PDF
    The flow regime around a hexagonal polygon with low Reynolds numbers Re<200 is numerically investigated in two different orientations namely face-oriented and corner-oriented. The basic flow characteristics, including drag coefficient, lift coefficient, Strouhal number and critical Reynolds number of the hexagonal cylinders, are calculated using 2D transient numerical analysis. Within the studied range of Re, the predicted lift coefficient and Strouhal number of the face-oriented hexagon were higher than those of the corner-oriented hexagon. In contrast, the predicted drag coefficient and critical Reynolds number of the corner-oriented hexagon were greater than those of the face-oriented. Flow characteristics of a novel textured geometry are also studied using 3D transient analysis. The Strouhal number St of the textured geometry was found to be in between the St of both the hexagonal cylinders, and its lift coefficient is lower than that of the hexagonal cylinders

    Three-leg correlations in the two component spanning tree on the upper half-plane

    Full text link
    We present a detailed asymptotic analysis of correlation functions for the two component spanning tree on the two-dimensional lattice when one component contains three paths connecting vicinities of two fixed lattice sites at large distance ss apart. We extend the known result for correlations on the plane to the case of the upper half-plane with closed and open boundary conditions. We found asymptotics of correlations for distance rr from the boundary to one of the fixed lattice sites for the cases rs1r\gg s \gg 1 and sr1s \gg r \gg 1.Comment: 16 pages, 5 figure

    Metal-insulator transition from combined disorder and interaction effects in Hubbard-like electronic lattice models with random hopping

    Full text link
    We uncover a disorder-driven instability in the diffusive Fermi liquid phase of a class of many-fermion systems, indicative of a metal-insulator transition of first order type, which arises solely from the competition between quenched disorder and interparticle interactions. Our result is expected to be relevant for sufficiently strong disorder in d = 3 spatial dimensions. Specifically, we study a class of half-filled, Hubbard-like models for spinless fermions with (complex) random hopping and short-ranged interactions on bipartite lattices, in d > 1. In a given realization, the hopping disorder breaks time reversal invariance, but preserves the special ``nesting'' symmetry responsible for the charge density wave instability of the ballistic Fermi liquid. This disorder may arise, e.g., from the application of a random magnetic field to the otherwise clean model. We derive a low energy effective field theory description for this class of disordered, interacting fermion systems, which takes the form of a Finkel'stein non-linear sigma model [A. M. Finkel'stein, Zh. Eksp. Teor. Fiz. 84, 168 (1983), Sov. Phys. JETP 57, 97 (1983)]. We analyze the Finkel'stein sigma model using a perturbative, one-loop renormalization group analysis controlled via an epsilon-expansion in d = 2 + epsilon dimensions. We find that, in d = 2 dimensions, the interactions destabilize the conducting phase known to exist in the disordered, non-interacting system. The metal-insulator transition that we identify in d > 2 dimensions occurs for disorder strengths of order epsilon, and is therefore perturbatively accessible for epsilon << 1. We emphasize that the disordered system has no localized phase in the absence of interactions, so that a localized phase, and the transition into it, can only appear due to the presence of the interactions.Comment: 47 pages, 25 figures; submitted to Phys. Rev. B. Long version of arXiv:cond-mat/060757

    CMS endcap RPC gas gap production for upgrade

    Get PDF
    The CMS experiment will install a RE4 layer of 144 new Resistive Plate Chambers (RPCs) on the existing york YE3 at both endcap regions to trigger high momentum muons from the proton-proton interaction. In this paper, we present the detailed procedures used in the production of new RPC gas gaps adopted in the CMS upgrade. Quality assurance is enforced as ways to maintain the same quality of RPC gas gaps as the existing 432 endcap RPC chambers that have been operational since the beginning of the LHC operation

    Explicit characterization of the identity configuration in an Abelian Sandpile Model

    Full text link
    Since the work of Creutz, identifying the group identities for the Abelian Sandpile Model (ASM) on a given lattice is a puzzling issue: on rectangular portions of Z^2 complex quasi-self-similar structures arise. We study the ASM on the square lattice, in different geometries, and a variant with directed edges. Cylinders, through their extra symmetry, allow an easy determination of the identity, which is a homogeneous function. The directed variant on square geometry shows a remarkable exact structure, asymptotically self-similar.Comment: 11 pages, 8 figure

    On the study of jamming percolation

    Full text link
    We investigate kinetically constrained models of glassy transitions, and determine which model characteristics are crucial in allowing a rigorous proof that such models have discontinuous transitions with faster than power law diverging length and time scales. The models we investigate have constraints similar to that of the knights model, introduced by Toninelli, Biroli, and Fisher (TBF), but differing neighbor relations. We find that such knights-like models, otherwise known as models of jamming percolation, need a ``No Parallel Crossing'' rule for the TBF proof of a glassy transition to be valid. Furthermore, most knight-like models fail a ``No Perpendicular Crossing'' requirement, and thus need modification to be made rigorous. We also show how the ``No Parallel Crossing'' requirement can be used to evaluate the provable glassiness of other correlated percolation models, by looking at models with more stable directions than the knights model. Finally, we show that the TBF proof does not generalize in any straightforward fashion for three-dimensional versions of the knights-like models.Comment: 13 pages, 18 figures; Spiral model does satisfy property
    corecore