13,470 research outputs found
Digital interactive image analysis by array processing
An attempt is made to draw a parallel between the existing geophysical data processing service industries and the emerging earth resources data support requirements. The relationship of seismic data analysis to ERTS data analysis is natural because in either case data is digitally recorded in the same format, resulting from remotely sensed energy which has been reflected, attenuated, shifted and degraded on its path from the source to the receiver. In the seismic case the energy is acoustic, ranging in frequencies from 10 to 75 cps, for which the lithosphere appears semi-transparent. In earth survey remote sensing through the atmosphere, visible and infrared frequency bands are being used. Yet the hardware and software required to process the magnetically recorded data from the two realms of inquiry are identical and similar, respectively. The resulting data products are similar
The Shell Model, the Renormalization Group and the Two-Body Interaction
The no-core shell model and the effective interaction can
both be derived using the Lee-Suzuki projection operator formalism. The main
difference between the two is the choice of basis states that define the model
space. The effective interaction can also be derived using
the renormalization group. That renormalization group derivation can be
extended in a straight forward manner to also include the no-core shell model.
In the nuclear matter limit the no-core shell model effective interaction in
the two-body approximation reduces identically to . The same
considerations apply to the Bloch-Horowitz version of the shell model and the
renormalization group treatment of two-body scattering by Birse, McGovern and
Richardson
Determination of S17(0) from published data
The experimental landscape for the 7Be+p radiative capture reaction is
rapidly changing as new high precision data become available. We present an
evaluation of existing data, detailing the treatment of systematic errors and
discrepancies, and show how they constrain the astrophysical S factor (S17),
independent of any nuclear structure model. With theoretical models robustly
determining the behavior of the sub-threshold pole, the extrapolation error can
be reduced and a constraint placed on the slope of S17. Using only radiative
capture data, we find S17(0) = 20.7 +/- 0.6 (stat) +/- 1.0 (syst) eV b if data
sets are completely independent, while if data sets are completely correlated
we find S17(0) = 21.4 +/- 0.5 (stat) +/- 1.4 (syst) eV b. The truth likely lies
somewhere in between these two limits. Although we employ a formalism capable
of treating discrepant data, we note that the central value of the S factor is
dominated by the recent high precision data of Junghans et al., which imply a
substantially higher value than other radiative capture and indirect
measurements. Therefore we conclude that further progress will require new high
precision data with a detailed error budget.Comment: 10 pages, 1 figure published versio
- …
