17,200 research outputs found
A 2.7-kW, 29-MHz class-E/F/sub odd/ amplifier with a distributed active transformer
A Class-E/Fodd high power amplifier (PA) using the distributed active transformer (DAT) is demonstrated at 29MHz. The DAT combines the output power from four VDMOS push-pull pairs. The zero voltage switching (ZVS) condition is investigated and modified for the Class-E/Fodd amplifier with a non-ideal output transformer. All lumped elements including the DAT and the transistor package are modeled and optimized to achieve the ZVS condition and the high drain efficiency. The PA exhibits 2.7kW output power with 79% drain efficiency and 18dB gain at 29MHz
Effects of age, sex, context, and lexicality on hyperarticulation of Korean fricatives
Seoul Korean is known for a rare three-way laryngeal contrast among lenis, fortis, and aspirated voiceless stops, which has recently undergone a change in phonetic implementation: whereas older speakers rely more on voice onset time (VOT) to distinguish lenis and aspirated stops, younger speakers rely more on onset fundamental frequency (f 0) in the following vowel. This production difference is reflected in disparate strategies for enhancing the contrast in clear speech, supporting the view that younger and older speakers represent the three laryngeal categories differently in terms of VOT and f 0 targets (Kang & Guion, 2008). In the current study, we used the clear speech paradigm to test for change in the representation of the two-way contrast between fortis (/s*/) and non-fortis (/s/) fricatives. Native Seoul Korean speakers (n = 32), representing two generations and both sexes, were recorded producing the coronal stops and fricatives in different vowel contexts, item types (real vs. nonce words), and speech registers (plain citation vs. clear). We report acoustic data on how the above factors influence production of the fricative contrast and discuss implications for the phonological categorization of non-fortis /s/ as lenis, aspirated, or a hybrid lenis-aspirated category.https://drive.google.com/open?id=0B1_NoAiLQlnkZ2RtdEtuYTlaMkkOthe
Analysis and elimination of hysteresis and noisy precursors in power amplifiers
Power amplifiers (PAs) often exhibit instabilities leading to frequency division by two or oscillations at incommensurate frequencies. This undesired behavior can be detected through a large-signal stability analysis of the solution. However, other commonly observed phenomena are still difficult to predict and eliminate. In this paper, the anomalous behavior observed in a Class-E PA is analyzed in detail. It involves hysteresis in the power-transfer curve, oscillation, and noisy precursors. The precursors are pronounced bumps in the power spectrum due to noise amplification under a small stability margin. The correction of the amplifier performance has required the development of a new technique for the elimination of the hysteresis. Instead of a trial-and-error procedure, this technique, of general application to circuit design, makes use of bifurcation concepts to suppress the hysteresis phenomenon through a single simulation on harmonic-balance software. Another objective has been the investigation of the circuit characteristics that make the noisy precursors observable in practical circuits and a technique has been derived for their elimination from the amplifier output spectrum. All the different techniques have been experimentally validated
Multiplicity Fluctuations in Limited Segments of Momentum Space in Statistical Models
Multiplicity fluctuations in limited segments of momentum space are
calculated for a classical pion gas within the statistical model. Results for
the grand canonical, canonical, and micro-canonical ensemble are obtained,
compared and discussed. We demonstrate that even in the large volume limit
correlations between macroscopic subsystems due to energy and momentum
conservation persist. Based on the micro-canonical formulation we make
qualitative predictions for the rapidity and transverse momentum dependence of
multiplicity fluctuations. The resulting effects are of similar magnitude as
the predicted enhancement due to a phase transition from a quark-gluon plasma
to a hadron gas phase, or due to the critical point of strongly interacting
matter, and qualitatively agree with recently published preliminary
multiplicity fluctuation data of the NA49 SPS experiment.Comment: 23 pages, 4 figure
Nonlinear Design Technique for High-Power Switching-Mode Oscillators
A simple nonlinear technique for the design of high-efficiency and high-power switching-mode oscillators is presented. It combines existing quasi-nonlinear methods and the use of an auxiliary generator (AG) in harmonic balance. The AG enables the oscillator optimization to achieve high output power and dc-to-RF conversion efficiency without affecting the oscillation frequency. It also imposes a sufficient drive on the transistor to enable the switching-mode operation with high efficiency. Using this AG, constant-power and constant-efficiency contour plots are traced in order to determine the optimum element values. The oscillation startup condition and the steady-state stability are analyzed with the pole-zero identification technique. The influence of the gate bias on the output power, efficiency, and stability is also investigated. A class-E oscillator is demonstrated using the proposed technique. The oscillator exhibits 75 W with 67% efficiency at 410 MHz
The Majorana spin in magnetic atomic chain systems
In this paper, we establish that Majorana zero modes emerging from a
topological band structure of a chain of magnetic atoms embedded in a
superconductor can be distinguished from trivial localized zero energy states
that may accidentally form in this system using spin resolved measurements. To
demonstrate this key Majorana diagnostics, we study the spin composition of
magnetic impurity induced in-gap Shiba states in a superconductor using a
quantum impurity model (at the mean-field level). By examining the spin and
spectral densities in the context of the Bogoliubov-de Gennes (BdG)
particle-hole symmetry, we derive a sum rule that relates the spin densities of
localized Shiba states with those in the normal state without
superconductivity. Extending our investigations to ferromagnetic chain of
magnetic impurities, we identify key features of the spin properties of the
extended Shiba state bands, as well as those associated with a localized
Majorana end mode when the effect of spin-orbit interaction is included. We
then formulate a phenomenological theory for the measurement of the local spin
densities with spin-polarized scanning tunneling microscopy (STM) techniques.
By combining the calculated spin densities and the measurement theory, we show
that spin-polarized STM measurements can reveal a sharp contrast in spin
polarization between an accidentally-zero-energy trivial Shiba state and a
Majorana zero mode in a topological superconducting phase in atomic chains. We
further confirm our results with numerical simulations that address generic
parameter settings.Comment: 22 pages, 12 figures (references updated
International Stock Market Efficiency: A Non-Bayesian Time-Varying Model Approach
This paper develops a non-Bayesian methodology to analyze the time-varying
structure of international linkages and market efficiency in G7 countries. We
consider a non-Bayesian time-varying vector autoregressive (TV-VAR) model, and
apply it to estimate the joint degree of market efficiency in the sense of Fama
(1970, 1991). Our empirical results provide a new perspective that the
international linkages and market efficiency change over time and that their
behaviors correspond well to historical events of the international financial
system.Comment: 21 pages, 2 tables, 6 figure
- …
