2,361 research outputs found
Monte Carlo Study of the Inflation-Deflation Transition in a Fluid Membrane
We study the conformation and scaling properties of a self-avoiding fluid
membrane, subject to an osmotic pressure , by means of Monte Carlo
simulations. Using finite size scaling methods in combination with a histogram
reweighting techniques we find that the surface undergoes an abrupt
conformational transition at a critical pressure , from low pressure
deflated configurations with a branched polymer characteristics to a high
pressure inflated phase, in agreement with previous findings
\cite{gompper,baum}. The transition pressure scales with the system
size as , with . Below
the enclosed volume scales as , in accordance with the
self-avoiding branched polymer structure, and for our data
are consistent with the finite size scaling form ,
where .
Also the finite size scaling behavior of the radii of gyration and the
compressibility moduli are obtained. Some of the observed exponents and the
mechanism behind the conformational collapse are interpreted in terms of a
Flory theory.Comment: 20 pages + postscript-file, Latex + Postscript, IFA Report No. 94/1
10 Gb/s bidirectional single fibre long reach PON link with distributed Raman amplification
We report operation of a single fibre bidirectional 80 km long reach PON link with symmetric up-and-downstream data rate of 10 Gb/s supported by distributed Raman fibre amplification only
A Cognitive Model of an Epistemic Community: Mapping the Dynamics of Shallow Lake Ecosystems
We used fuzzy cognitive mapping (FCM) to develop a generic shallow lake
ecosystem model by augmenting the individual cognitive maps drawn by 8
scientists working in the area of shallow lake ecology. We calculated graph
theoretical indices of the individual cognitive maps and the collective
cognitive map produced by augmentation. The graph theoretical indices revealed
internal cycles showing non-linear dynamics in the shallow lake ecosystem. The
ecological processes were organized democratically without a top-down
hierarchical structure. The steady state condition of the generic model was a
characteristic turbid shallow lake ecosystem since there were no dynamic
environmental changes that could cause shifts between a turbid and a clearwater
state, and the generic model indicated that only a dynamic disturbance regime
could maintain the clearwater state. The model developed herein captured the
empirical behavior of shallow lakes, and contained the basic model of the
Alternative Stable States Theory. In addition, our model expanded the basic
model by quantifying the relative effects of connections and by extending it.
In our expanded model we ran 4 simulations: harvesting submerged plants,
nutrient reduction, fish removal without nutrient reduction, and
biomanipulation. Only biomanipulation, which included fish removal and nutrient
reduction, had the potential to shift the turbid state into clearwater state.
The structure and relationships in the generic model as well as the outcomes of
the management simulations were supported by actual field studies in shallow
lake ecosystems. Thus, fuzzy cognitive mapping methodology enabled us to
understand the complex structure of shallow lake ecosystems as a whole and
obtain a valid generic model based on tacit knowledge of experts in the field.Comment: 24 pages, 5 Figure
Performance Impairments due to Gain Transients in a Raman-based Bi-directional Long-reach PON Link.
Direct UV written Michelson interferometer for RZ signal generation using phase-to-intensity modulation conversion
- …
