994 research outputs found
Centenarians today: New insights on selection from the 5-COOP study
The number of oldest old grew tremendously over the past few decades. However, recent studies have disclosed that the pace of increase strongly varies among countries. The present study aims to specify the level of mortality selection among the nonagenarians and centenarians living currently in five low mortality countries, Denmark, France, Japan, Switzerland, and Sweden, part of the 5-Country Oldest Old Project (5-COOP). All data come from the Human Mortality Database, except for the number of centenarians living in Japan. We disclosed three levels of mortality selection, a milder level in Japan, a stronger level in Denmark and Sweden and an intermediary level in France and Switzerland. These divergences offer an opportunity to study the existence of a trade-off between the level of mortality selection and the functional health status of the oldest old survivors which will be seized by the 5-COOP project. © 2010 Jean-Marie Robine et al.published_or_final_versio
In vitro and in vivo evaluation of superparamagnetic iron oxide nanoparticles coated by bisphosphonates: the effects of electrical charge and molecule length.
Physicochemical coating properties are often considered to be determining factors for in vivo characteristics of superparamagnetic iron oxide nanoparticles, used as contrast agent in Magnetic Resonance Imaging (MRI). To investigate the electrical charge (modified by zero, one or two ammonium groups) and the molecule length (3, 5 or 7 methylene chains) effects of bisphosphonate-type coatings, we assessed the complement activation, in vivo plasma and tissue relaxation time alterations of intravenously injected small iron oxide nanoparticles (<25 nm) on male healthy Wistar rats. The presence of ammonium groups induces a weak activation of the complement whatever the size and the concentration of particles, whereas hydroxyethylenebisphosphonate (HEBP)-coated particles are poor complement activators only at the lowest concentration. In vivo, HEBP-coated nanoparticles have the greatest prolonged relaxation time effects, despite their higher negative electrical charge, contrary to two ammonium bearing coatings. No significant differences were observed between mono-ammonium molecular coatings
Volumetric assessment of myocardial viability in rats using 3D double contrast enhanced T1 and T2-weighted MRI
OBJECTIVE: Volumetric evaluation of the myocardial viability post-infarction in rats using 3D in vivo MR imaging at 7 T using injection of an extracellular paramagnetic contrast agent and intravascular superparamagnetic iron oxide nanoparticles in the same imaging session.
MATERIALS AND METHODS: Five hours after induction of permanent myocardial infarction in rats (n=6), 3D in vivo T1- and T2-weighted MR Imaging was performed prior to and after Gd-DOTA injection (0.2 mmol/kg) and prior to and after nanoparticle injection (5 mg Fe/kg) to assess infarct size and myocardial viability.
RESULTS: 3D MR Imaging using a successive contrast agent injection showed a difference of infarct size after Gd-DOTA injection on T1-weighted images compared to the one measured on T2-weighted images after Gd-DOTA and nanoparticle injection.
CONCLUSION: The use of 3D T1- and T2-weighted MR Imaging using a double contrast agents protocol made possible the accurate characterization of myocardial infarction volume and allowed the detection of myocardial viability post-infarction in rats
New starch-based radiotracer for lung perfusion scintigraphy
PURPOSE:
In order to avoid the microbiological risks linked to human serum albumin macroaggregates (MAA) used for lung perfusion scintigraphy, we developed a new starch-based Tc-99m potential radiopharmaceutical.
METHODS:
Microparticles were prepared from oxidised starch coupled to natural polyamine for Tc-99m complexation. Suspensions were formulated as ready-to-use kits for easy one-step labelling procedures.
RESULTS:
Particle-size analysis, electron microscopy, and confocal microscopy were performed for microparticle characterisation, and gave a typical size distribution ranging from 7 to 63 microm, with a homogenous population of spherical or oval-shaped microparticles. Radiochemical purity exceeded 95%, and was stable for at least 8 h. When challenged with histidine and human plasma, labelling was also stable. Dynamic scintigraphic acquisitions and biodistribution studies conducted on healthy Wistar rats showed a tracer accumulation with more than 80% of the ID in the lungs after 15 min.
CONCLUSIONS:
With clinically significant characteristics such as a lung half-life of 3 h, a lung-to-vascular ratio of 900, and a lung-to-liver ratio of 90, starch-based microparticles exhibit all the qualities for an effective new lung perfusion agent
Assessment of myocardial viability in rats: Evaluation of a new method using superparamagnetic iron oxide nanoparticles and Gd-DOTA at high magnetic field
The aim of this study was to detect salvageable peri-infarction myocardium by MRI in rats after infarction, using with a double contrast agent (CA) protocol at 7 Tesla. Intravascular superparamagnetic iron oxide (SPIO) nanoparticles and an extracellular paramagnetic CA (Gd-DOTA) were used to characterize the peri-infarction zone, which may recover function after reperfusion occurs. Infarcted areas measured from T1-weighted (T1-w) images post Gd-DOTA administration were overestimated compared to histological TTC staining (52% +/- 3% of LV surface area vs. 40% +/- 3%, P=0.03) or to T2-w images post SPIO administration (41% +/- 4%, P=0.04), whereas areas measured from T2-w images post SPIO administration were not significantly different from those measured histologically (P=0.7). Viable and nonviable myocardium portions of ischemically injured myocardium were enhanced after diffusive Gd-DOTA injection. The subsequent injection of vascular SPIO nanoparticles enables the discrimination of viable peri-infarction regions by specifically altering the signal of the still-vascularized myocardium
Exciton Spin Dynamics in Semiconductor Quantum Wells
In this paper we will review Exciton Spin Dynamics in Semiconductor Quantum
Wells. The spin properties of excitons in nanostructures are determined by
their fine structure. We will mainly focus in this review on GaAs and InGaAs
quantum wells which are model systems.Comment: 55 pages, 27 figure
The pre-launch Planck Sky Model: a model of sky emission at submillimetre to centimetre wavelengths
We present the Planck Sky Model (PSM), a parametric model for the generation
of all-sky, few arcminute resolution maps of sky emission at submillimetre to
centimetre wavelengths, in both intensity and polarisation. Several options are
implemented to model the cosmic microwave background, Galactic diffuse emission
(synchrotron, free-free, thermal and spinning dust, CO lines), Galactic H-II
regions, extragalactic radio sources, dusty galaxies, and thermal and kinetic
Sunyaev-Zeldovich signals from clusters of galaxies. Each component is
simulated by means of educated interpolations/extrapolations of data sets
available at the time of the launch of the Planck mission, complemented by
state-of-the-art models of the emission. Distinctive features of the
simulations are: spatially varying spectral properties of synchrotron and dust;
different spectral parameters for each point source; modeling of the clustering
properties of extragalactic sources and of the power spectrum of fluctuations
in the cosmic infrared background. The PSM enables the production of random
realizations of the sky emission, constrained to match observational data
within their uncertainties, and is implemented in a software package that is
regularly updated with incoming information from observations. The model is
expected to serve as a useful tool for optimizing planned microwave and
sub-millimetre surveys and to test data processing and analysis pipelines. It
is, in particular, used for the development and validation of data analysis
pipelines within the planck collaboration. A version of the software that can
be used for simulating the observations for a variety of experiments is made
available on a dedicated website.Comment: 35 pages, 31 figure
A Comparison of Algorithms for the Construction of SZ Cluster Catalogues
We evaluate the construction methodology of an all-sky catalogue of galaxy
clusters detected through the Sunyaev-Zel'dovich (SZ) effect. We perform an
extensive comparison of twelve algorithms applied to the same detailed
simulations of the millimeter and submillimeter sky based on a Planck-like
case. We present the results of this "SZ Challenge" in terms of catalogue
completeness, purity, astrometric and photometric reconstruction. Our results
provide a comparison of a representative sample of SZ detection algorithms and
highlight important issues in their application. In our study case, we show
that the exact expected number of clusters remains uncertain (about a thousand
cluster candidates at |b|> 20 deg with 90% purity) and that it depends on the
SZ model and on the detailed sky simulations, and on algorithmic implementation
of the detection methods. We also estimate the astrometric precision of the
cluster candidates which is found of the order of ~2 arcmins on average, and
the photometric uncertainty of order ~30%, depending on flux.Comment: Accepted for publication in A&A: 14 pages, 7 figures. Detailed
figures added in Appendi
Effect of the chain lenght and electrical charge on properties od ammonium-bearing bisphosphonate-coated superparamagnetic iron oxide nanoparticles: formulation and physicochemical studies
- …
