2,304 research outputs found
Pulse retrieval and soliton formation in a non-standard scheme for dynamic electromagnetically induced transparency
We examine in detail an alternative method of retrieving the information
written into an atomic ensemble of three-level atoms using electromagnetically
induced transparency. We find that the behavior of the retrieved pulse is
strongly influenced by the relative collective atom-light coupling strengths of
the two relevant transitions. When the collective atom-light coupling strength
for the retrieval beam is the stronger of the two transitions, regeneration of
the stored pulse is possible. Otherwise, we show the retrieval process can lead
to creation of soliton-like pulses.Comment: 11 figure
Comparative investigation of the coupled-tetrahedra quantum spin systems Cu2Te2O5X2, X=Cl, Br and Cu4Te5O12Cl4
We present a comparative study of the coupled-tetrahedra quantum spin systems
Cu2Te2O5X2, X=Cl, Br (Cu-2252(X)) and the newly synthesized Cu4Te5O12Cl4
(Cu-45124(Cl)) based on ab initio Density Functional Theory calculations. The
magnetic behavior of Cu-45124(Cl) with a phase transition to an ordered state
at a lower critical temperature T=13.6K than in Cu-2252(Cl) (T=18K) can
be well understood in terms of the modified interaction paths. We identify the
relevant structural changes between the two systems and discuss the
hypothetical behavior of the not yet synthesized Cu-45124(Br) with an ab initio
relaxed structure using Car-Parrinello Molecular Dynamics.Comment: 2 pages, 1 figure; submitted to Proceedings of M2S-HTSC VIII, Dresden
200
Two-photon double ionization of neon using an intense attosecond pulse train
We present the first demonstration of two-photon double ionization of neon
using an intense extreme ultraviolet (XUV) attosecond pulse train (APT) in a
photon energy regime where both direct and sequential mechanisms are allowed.
For an APT generated through high-order harmonic generation (HHG) in argon we
achieve a total pulse energy close to 1 J, a central energy of 35 eV and a
total bandwidth of eV. The APT is focused by broadband optics in a
neon gas target to an intensity of Wcm. By tuning
the photon energy across the threshold for the sequential process the double
ionization signal can be turned on and off, indicating that the two-photon
double ionization predominantly occurs through a sequential process. The
demonstrated performance opens up possibilities for future XUV-XUV pump-probe
experiments with attosecond temporal resolution in a photon energy range where
it is possible to unravel the dynamics behind direct vs. sequential double
ionization and the associated electron correlation effects
Full quantum solutions to the resonant four-wave mixing of two single-photon wave packets
We analyze both analytically and numerically the resonant four-wave mixing of
two co-propagating single-photon wave packets. We present analytic expressions
for the two-photon wave function and show that soliton-type quantum solutions
exist which display a shape-preserving oscillatory exchange of excitations
between the modes. Potential applications including quantum information
processing are discussed.Comment: 7 pages, 3 figure
Longitudinal magnon in the tetrahedral spin system Cu2Te2O5Br2 near quantum criticality
We present a comprehensive study of the coupled tetrahedra-compound
Cu2Te2O5Br2 by theory and experiments in external magnetic fields. We report
the observation of a longitudinal magnon in Raman scattering in the ordered
state close to quantum criticality. We show that the excited
tetrahedral-singlet sets the energy scale for the magnetic ordering temperature
T_N. This energy is determined experimentally. The ordering temperature T_N has
an inverse-log dependence on the coupling parameters near quantum criticality
A cascade of magnetic field induced spin transitions in LaCoO3
We present magnetization and magnetostriction studies of the insulating
perovskite LaCoO3 in magnetic fields approaching 100 T. In marked contrast with
expectations from single-ion models, the data reveal two distinct first-order
spin transitions and well-defined magnetization plateaux. The magnetization at
the higher plateau is only about half the saturation value expected for spin-1
Co3+ ions. These findings strongly suggest collective behavior induced by
strong interactions between different electronic -- and therefore spin --
configurations of Co3+ ions. We propose a model of these interactions that
predicts crystalline spin textures and a cascade of four magnetic phase
transitions at high fields, of which the first two account for the experimental
data.Comment: 5 pages + supplementary materials, 5 figure
Quantum theory of resonantly enhanced four-wave mixing: mean-field and exact numerical solutions
We present a full quantum analysis of resonant forward four-wave mixing based
on electromagnetically induced transparency (EIT). In particular, we study the
regime of efficient nonlinear conversion with low-intensity fields that has
been predicted from a semiclassical analysis. We derive an effective nonlinear
interaction Hamiltonian in the adiabatic limit. In contrast to conventional
nonlinear optics this Hamiltonian does not have a power expansion in the fields
and the conversion length increases with the input power. We analyze the
stationary wave-mixing process in the forward scattering configuration using an
exact numerical analysis for up to input photons and compare the results
with a mean-field approach. Due to quantum effects, complete conversion from
the two pump fields into the signal and idler modes is achieved only
asymptotically for large coherent pump intensities or for pump fields in
few-photon Fock states. The signal and idler fields are perfectly quantum
correlated which has potential applications in quantum communication schemes.
We also discuss the implementation of a single-photon phase gate for continuous
quantum computation.Comment: 10 pages, 11 figure
High-order harmonic generation with a strong laser field and an attosecond-pulse train: the Dirac Delta comb and monochromatic limits
In recent publications, it has been shown that high-order harmonic generation
can be manipulated by employing a time-delayed attosecond pulse train
superposed to a strong, near-infrared laser field. It is an open question,
however, which is the most adequate way to approximate the attosecond pulse
train in a semi-analytic framework. Employing the Strong-Field Approximation
and saddle-point methods, we make a detailed assessment of the spectra obtained
by modeling the attosecond pulse train by either a monochromatic wave or a
Dirac-Delta comb. These are the two extreme limits of a real train, which is
composed by a finite set of harmonics. Specifically, in the monochromatic
limit, we find the downhill and uphill sets of orbits reported in the
literature, and analyze their influence on the high-harmonic spectra. We show
that, in principle, the downhill trajectories lead to stronger harmonics, and
pronounced enhancements in the low-plateau region. These features are analyzed
in terms of quantum interference effects between pairs of quantum orbits, and
compared to those obtained in the Dirac-Delta limit.Comment: 10 pages, 7 figures (eps files). To appear in Laser Physic
- …
