19 research outputs found

    Conformational Determinants of Phosphotyrosine Peptides Complexed with the Src SH2 Domain

    Get PDF
    The inhibition of specific SH2 domain mediated protein-protein interactions as an effective chemotherapeutic approach in the treatment of diseases remains a challenge. That different conformations of peptide-ligands are preferred by different SH2 domains is an underappreciated observation from the structural analysis of phosphotyrosine peptide binding to SH2 domains that may aid in future drug design. To explore the nature of ligand binding, we use simulated annealing (SA) to sample the conformational space of phosphotyrosine-containing peptides complexed with the Src SH2 domain. While in good agreement with the crystallographic and NMR studies of high-affinity phosphopeptide-SH2 domain complexes, the results suggest that the structural basis for phopsphopeptide- Src SH2 interactions is more complex than the “two-pronged plug two-hole socket” model. A systematic study of peptides of type pYEEX, where pY is phosphotyrosine and X is a hydrophobic residue, indicates that these peptides can assume two conformations, one extended and one helical, representing the balance between the interaction of residue X with the hydrophobic hole on the surface of the Src SH2 domain, and its contribution to the inherent tendency of the two glutamic acids to form an α-helix. In contrast, a β-turn conformation, almost identical to that observed in the crystal structure of pYVNV bound to the Grb2 SH2 domain, predominates for pYXNX peptides, even in the presence of isoleucine at the third position. While peptide binding affinities, as measured by fluorescence polarization, correlate with the relative proportion of extended peptide conformation, these results suggest a model where all three residues C-terminal to the phosphotyrosine determine the conformation of the bound phosphopeptide. The information obtained in this work can be used in the design of specific SH2 domain inhibitors

    A hidden active site in the potential drug target Mycobacterium tuberculosis dUTPase is accessible through small-amplitude protein conformational changes

    Get PDF
    dUTPases catalyze the hydrolysis of dUTP into dUMP and pyrophosphate to maintain the proper nucleotide pool for DNA metabolism. Recent evidence suggests that dUTPases may also represent a selective drug target in mycobacteria because of the crucial role of these enzymes in maintaining DNA integrity. Nucleotide-hydrolyzing enzymes typically harbor a buried ligand-binding pocket at interdomain or intersubunit clefts, facilitating proper solvent shielding for the catalyzed reaction. The mechanism by which substrate binds this hidden pocket and product is released in dUTPases is unresolved because of conflicting crystallographic and spectroscopic data. We sought to resolve this conflict by using a combination of random acceleration molecular dynamics (RAMD) methodology and structural and biochemical methods to study the dUTPase from Mycobacterium tuberculosis. In particular, the RAMD approach used in this study provided invaluable insights into the nucleotide dissociation process that reconciles all previous experimental observations. Specifically, our data suggest that nucleotide binding takes place as a small stretch of amino acids transiently slides away and partially uncovers the active site. The in silico data further revealed a new dUTPase conformation on the pathway to a relatively open active site. To probe this model, we developed the Trp21 reporter and collected crystallographic, spectroscopic, and kinetic data that confirmed the interaction of Trp21 with the active site shielding C-terminal arm, suggesting that the RAMD method is effective. In summary, our computational simulations and spectroscopic results support the idea that small loop movements in dUTPase allow the shuttlingof the nucleotides between the binding pocket and the solvent

    Ligand and structure-based methodologies for the prediction of the activity of G protein-coupled receptor ligands

    Get PDF
    Accurate in silico models for the quantitative prediction of the activity of G protein-coupled receptor (GPCR) ligands would greatly facilitate the process of drug discovery and development. Several methodologies have been developed based on the properties of the ligands, the direct study of the receptor-ligand interactions, or a combination of both approaches. Ligand-based three-dimensional quantitative structure-activity relationships (3D-QSAR) techniques, not requiring knowledge of the receptor structure, have been historically the first to be applied to the prediction of the activity of GPCR ligands. They are generally endowed with robustness and good ranking ability; however they are highly dependent on training sets. Structure-based techniques generally do not provide the level of accuracy necessary to yield meaningful rankings when applied to GPCR homology models. However, they are essentially independent from training sets and have a sufficient level of accuracy to allow an effective discrimination between binders and nonbinders, thus qualifying as viable lead discovery tools. The combination of ligand and structure-based methodologies in the form of receptor-based 3D-QSAR and ligand and structure-based consensus models results in robust and accurate quantitative predictions. The contribution of the structure-based component to these combined approaches is expected to become more substantial and effective in the future, as more sophisticated scoring functions are developed and more detailed structural information on GPCRs is gathered

    Spectrally tunable ultrashort monochromatized extreme ultraviolet pulses at 100 kHz

    Get PDF
    We present the experimental realization of spectrally tunable, ultrashort, quasi-monochromatic extreme ultraviolet (XUV) pulses generated at 100 kHz repetition rate in a user-oriented gas high harmonic generation beamline of the Extreme Light Infrastructure—Attosecond Light Pulse Source facility. Versatile spectral and temporal shaping of the XUV pulses is accomplished with a double-grating, time-delay compensated monochromator accommodating the two composing stages in a novel, asymmetrical geometry. This configuration supports the achievement of high monochromatic XUV flux (2.8 ± 0.9 × 1010 photons/s at 39.7 eV selected with 700 meV full width at half maximum bandwidth) combined with ultrashort pulse duration (4.0 ± 0.2 fs using 12.1 ± 0.6 fs driving pulses) and small spot size (sub-100 µm). Focusability, spectral bandwidth, and overall photon flux of the produced radiation were investigated, covering a wide range of instrumental configurations. Moreover, complete temporal (intensity and phase) characterization of the few-femtosecond monochromatic XUV pulses—a goal that is difficult to achieve by conventional reconstruction techniques—has been realized using a ptychographic algorithm on experimentally recorded XUV-infrared pump-probe traces. The presented results contribute to in situ, time-resolved experiments, accessing direct information on the electronic structure dynamics of novel target materials

    Molecular basis of binding and stability of curcumin in diamide-linked y-cyclodextrin dimers

    No full text
    Curcumin is a naturally occurring molecule with medicinal properties that is unstable in water, whose efficacy as a drug can potentially be enhanced by encapsulation inside a host molecule. In this work, the thermodynamics and mechanism of binding of curcumin to succinamide- and urea-linked γ-cyclodextrin (γ-CD) dimers in water are investigated by molecular dynamics simulations. The simulated binding constants of curcumin to succinamide- and urea-linked γ-CD dimers at 310 K are 11.3 × 10⁶ M ⁻¹ and 1.6 × 10⁶ M ⁻¹, respectively, matching well with previous experimental results of 8.7 × 10⁶ M ⁻¹ and 2.0 × 10⁶ M ⁻¹. The simulations reveal structural information about the encapsulation of curcumin inside the diamide-linked γ-CD dimers, with distinct qualitative differences observed for the two dimers. In particular, (1) the predominant orientation of curcumin inside the urea-linked γ-CD dimer is perpendicular to that in the succinamide-linked γ-CD dimer; (2) the magnitude of the angle between the planes of the cyclodextrins is larger for the succinamide-linked γ-CD dimer; and (3) curcumin exhibits greater configurational freedom inside the urea-linked γ-CD dimer. A consequence of some of these structural differences is that the dimer interior is more accessible to water in the succinamide-linked γ-CD dimer. These observations explain the higher stability and lower binding constant observed experimentally for curcumin in the urea-linked cyclodextrin γ-CD dimer compared with the succinamide-linked γ-CD dimer. More generally, the results demonstrate how stability and binding strength can be decoupled and thus separately optimized in host–guest systems used for drug delivery.Samuel J. Wallace, Tak W. Kee, and David M. Huan

    Computational Study of the Binding Modes of Caffeine to the Adenosine A 2A

    No full text
    Using the recently solved crystal structure of the human adenosine A(2A) receptor, we applied MM/PBSA to compare the binding modes of caffeine with those of the high-affinity selective antagonist ZM241385. MD simulations were performed in the environment of the lipid membrane bilayer. Four low-energy binding modes of caffeine-A(2A) were found, all of which had similar energies. Assuming an equal contribution of each binding mode of caffeine, the computed binding free energy difference between caffeine and ZM241385 is -2.4 kcal/mol, which compares favorably with the experimental value, -3.6 kcal/mol. The configurational entropy contribution of -0.9 kcal/mol from multiple binding modes of caffeine helps explain how a small molecule like caffeine can compete with a significantly larger molecule, ZM241385, which can form many more interactions with the receptor. We also performed residue-wise energy decomposition and found that Phe168, Leu249, and Ile274 contribute most significantly to the binding modes of caffeine and ZM241385

    Proton-coupled sugar transport in the prototypical major facilitator superfamily protein XylE

    Get PDF
    The major facilitator superfamily (MFS) is the largest collection of structurally related membrane proteins that transport a wide array of substrates. The proton-coupled sugar transporter XylE is the first member of the MFS that has been structurally characterized in multiple transporting conformations, including both the outward and inward-facing states. Here we report the crystal structure of XylE in a new inward-facing open conformation, allowing us to visualize the rocker-switch movement of the N-domain against the C-domain during the transport cycle. Using molecular dynamics simulation, and functional transport assays, we describe the movement of XylE that facilitates sugar translocation across a lipid membrane and identify the likely candidate proton-coupling residues as the conserved Asp27 and Arg133. This study addresses the structural basis for proton-coupled substrate transport and release mechanism for the sugar porter family of proteins

    Refined OPLS all-atom force field for saturated phosphatidylcholine bilayers at full hydration

    No full text
    We report parametrization of dipalmitoyl-phosphatidylcholine (DPPC) in the framework of the Optimized Parameters for Liquid Simulations all-atom (OPLS-AA) force field. We chose DPPC as it is one of the most studied phospholipid species and thus has plenty of experimental data necessary for model validation, and it is also one of the highly important and abundant lipid types, e.g., in lung surfactant. Overall, PCs have not been previously parametrized in the OPLS-AA force field; thus, there is a need to derive its bonding and nonbonding parameters for both the polar and nonpolar parts of the molecule. In the present study, we determined the parameters for torsion angles in the phosphatidylcholine and glycerol moieties and in the acyl chains, as well the partial atomic charges. In these calculations, we used three methods: (1) Hartree-Fock (HF), (2) second order Moller-Plesset perturbation theory (MP2), and (3) density functional theory (DFT). We also tested the effect of the polar environment by using the polarizable continuum model (PCM), and for acyl chains the van der Waals parameters were also adjusted. In effect, six parameter sets were generated and tested on a DPPC bilayer. Out of these six sets, only one was found to be able to satisfactorily reproduce experimental data for the lipid bilayer. The successful DPPC model was obtained from MP2 calculations in an implicit polar environment (PCM)
    corecore