22,822 research outputs found

    Accuracy of generic mesh conformation: the future of facial morphological analysis

    Get PDF
    Three-dimensional (3D) analysis of the face is required for the assessment of changes following surgery, to monitor the progress of pathological conditions and for the evaluation of facial growth. Sophisticated methods have been applied for the evaluation of facial morphology, the most common being dense surface correspondence. The method depends on the application of a mathematical facial mask known as the generic facial mesh for the evaluation of the characteristics of facial morphology. This study evaluated the accuracy of the conformation of generic mesh to the underlying facial morphology. The study was conducted on 10 non-patient volunteers. Thirty-four 2-mm-diameter self-adhesive, non-reflective markers were placed on each face. These were readily identifiable on the captured 3D facial image, which was captured by Di3D stereophotogrammetry. The markers helped in minimising digitisation errors during the conformation process. For each case, the face was captured six times: at rest and at the maximum movements of four facial expressions. The 3D facial image of each facial expression was analysed. Euclidean distances between the 19 corresponding landmarks on the conformed mesh and on the original 3D facial model provided a measure of the accuracy of the conformation process. For all facial expressions and all corresponding landmarks, these distances were between 0.7 and 1.7 mm. The absolute mean distances ranged from 0.73 to 1.74 mm. The mean absolute error of the conformation process was 1.13 ± 0.26 mm. The conformation of the generic facial mesh is accurate enough for clinical trial proved to be accurate enough for the analysis of the captured 3D facial images

    DNA Vaccines Encoding Antigen Targeted to MHC Class II Induce Influenza-Specific CD8+ T Cell Responses, Enabling Faster Resolution of Influenza Disease

    Get PDF
    Current influenza vaccines are effective but imperfect, failing to cover against emerging strains of virus and requiring seasonal administration to protect against new strains. A key step to improving influenza vaccines is to improve our understanding of vaccine induced protection. Whilst it is clear that antibodies play a protective role, vaccine induced CD8+ T cells can improve protection. To further explore the role of CD8+ T cells we used a DNA vaccine that encodes antigen dimerised to an immune cell targeting module. Immunising CB6F1 mice with the DNA vaccine in a heterologous prime boost regime with the seasonal protein vaccine improved the resolution of influenza disease compared to protein alone. This improved disease resolution was dependent on CD8+ T cells. However, DNA vaccine regimes that induced CD8+ T cells alone were not protective and did not boost the protection provided by protein. The MHC targeting module used was an anti-I-Ed single chain antibody specific to the BALB/c strain of mice. To test the role of MHC targeting we compared the response between BALB/c, C57BL/6 mice and an F1 cross of the two strains (CB6F1). BALB/c mice were protected, C57BL/6 were not and the F1 had an intermediate phenotype; showing that the targeting of antigen is important in the response. Based on these findings, and in agreement with other studies using different vaccines, we conclude that in addition to antibody, inducing a protective CD8 response is important in future influenza vaccines

    Investigation of thermal resistance and power consumption in Ga-doped indium oxide (In2O3) nanowire phase change random access memory

    Get PDF
    The resistance stability and thermal resistance of phase change memory devices using similar to 40 nm diameter Ga-doped In2O3 nanowires (Ga:In2O3 NW) with different Ga-doping concentrations have been investigated. The estimated resistance stability (R(t)/R-0 ratio) improves with higher Ga concentration and is dependent on annealing temperature. The extracted thermal resistance (R-th) increases with higher Ga-concentration and thus the power consumption can be reduced by similar to 90% for the 11.5% Ga: In2O3 NW, compared to the 2.1% Ga: In2O3 NW. The excellent characteristics of Ga-doped In2O3 nanowire devices offer an avenue to develop low power and reliable phase change random access memory applications. (C) 2014 AIP Publishing LLC.X113sciescopu

    Shakura-Sunyaev Disk Can Smoothly Match Advection-Dominated Accretion Flow

    Get PDF
    We use the standard Runge-Kutta method to solve the set of basic equations describing black hole accretion flows composed of two-temperature plasma. We do not invoke any extra energy transport mechanism such as thermal conduction and do not specify any ad hoc outer boundary condition for the advection-dominated accretion flow (ADAF) solution. We find that in the case of high viscosity and non-zero radiative cooling, the ADAF solution can have an asymptotic approach to the Shakura-Sunyaev disk (SSD) solution, and the SSD-ADAF transition radius is close to the central black hole. Our results further prove the mechanism of thermal instability-triggered SSD-ADAF transition suggested previously by Takeuchi & Mineshige and Gu & Lu.Comment: 10 pages, 2 figures, accepted for publication in ApJ Letter

    Growth, transport, and magnetic properties of Pr0.67Ca0.33MnO3 thin films

    Get PDF
    We have grown Pr0.67Ca0.33MnO3 thin films on LaAlO3 using pulsed laser deposition. Below 50 K, a field induced insulator-metal transition results in changes in resistivity of at least 6 orders of magnitude. The field induced conducting state is metastable at low temperature. The temperature dependence of the resistivity exhibits considerable hysteresis in a field of 40 kOe but becomes reversible in a field of 80 kOe
    corecore