935 research outputs found
Absolute frequency measurement of the 7s S 7s7p P transition in Ra
Transition frequencies were determined for transitions in Ra in an atomic
beam and for reference lines in Te molecules in a vapor cell. The absolute
frequencies were calibrated against a GPS stabilized Rb-clock by means of an
optical frequency comb. The 7sS(F = 1/2)-7s7pP(F = 3/2)
transition in Ra was determined to be MHz. The
measurements provide input for designing efficient and robust laser cooling of
Ra atoms in preparation of a search for a permanent electric dipole moment in
Ra isotopes.Comment: Accepted for publication in the rapid communication of Physical
review
Direct Visualization of Single Nuclear Pore Complex Proteins Using Genetically-Encoded Probes for DNA-PAINT
The nuclear pore complex (NPC) is one of the largest and most complex protein assemblies in the cell and, among other functions, serves as the gatekeeper of nucleocytoplasmic transport. Unraveling its molecular architecture and functioning has been an active research topic for decades with recent cryogenic electron microscopy and super-resolution studies advancing our understanding of the architecture of the NPC complex. However, the specific and direct visualization of single copies of NPC proteins is thus far elusive. Herein, we combine genetically-encoded self-labeling enzymes such as SNAP-tag and HaloTag with DNA-PAINT microscopy. We resolve single copies of nucleoporins in the human Y-complex in three dimensions with a precision of circa 3 nm, enabling studies of multicomponent complexes on the level of single proteins in cells using optical fluorescence microscopy
Investigations of Ra properties to test possibilities of new optical frequency standards
The present work tests the suitability of the narrow transitions $7s \
^2S_{1/2} \to 6d ^2D_{3/2}7s ^2S_{1/2} \to 6d ^2D_{5/2}^+6d^+$ to be considered as a potential
candidate for an atomic clock. This is further corroborated by our studies of
the hyperfine interactions, dipole and quadrupole polarizabilities and
quadrupole moments of the appropriate states of this system.Comment: Latex files, 5 pages, 1 figur
A biotecnologia nos programas de melhoramento de forrageiras tropicais da Embrapa Gado de Corte.
Neste trabalho procurou-se apresentar e discutir, de forma ampla, o uso da biotecnologia e seu potencial para os programas de melhoramento de forrageiras tropicais realizados na Embrapa Gado de Corte. O uso da biotecnologia nesses programas é uma atividade recente, mas importantes resultados vêm sendo gerados a fim de auxiliar o processo de obtenção de novas cultivares forrageiras. A maioria dos trabalhos apresentados utiliza marcadores Random Amplification of Polymorphic DNA (RAPD) para aplicações em curto prazo: estudos de diversidade em acessos de bancos de germoplasma, identificação de híbridos e estimação da taxa de cruzamento. Aplicações em médio e longo prazos do uso de marcadores, como mapeamento genético e seleção auxiliada por marcadores moleculares (SAMM), ainda necessitam de maiores investimentos, tanto na busca de novos marcadores, quanto no desenvolvimento de populações adequadas para esses estudos. Em 2007, teve início uma nova linha de pesquisa nessa unidade, a prospecção de genes com características econômicas. Genes para a tolerância ao alumínio são o foco dessa pesquisa que pretende explorar a sintenia entre os genomas de gramíneas, visando ao desenvolvimento de cultivares de braquiária mais tolerantes ao alumínio. A Embrapa Gado de Corte vem investindo em pessoal e aquisição de equipamentos para avançar não só na produção de cultivares de forrageiras mais adaptadas às necessidades de um mercado cada vez mais exigente, como também no crescimento institucional do setor de biotecnologia.bitstream/CNPGC-2009-09/12403/1/DOC168.pd
Lamb shift in muonic helium ion
The Lamb shift (2P_{1/2}-2S_{1/2}) in the muonic helium ion (mu ^4_2He)^+ is
calculated with the account of contributions of orders alpha^3, alpha^4,
alpha^5 and alpha^6. Special attention is given to corrections of the electron
vacuum polarization, the nuclear structure and recoil effects. The obtained
numerical value of the Lamb shift 1379.028 meV can be considered as a reliable
estimate for the comparison with experimental data.Comment: 18 pages, 11 figure
On-line Excited-State Laser Spectroscopy of Trapped Short-Lived Ra Ions
As an important step towards an atomic parity violation experiment in one
single trapped Ra ion, laser spectroscopy experiments were performed with
on-line produced short-lived Ra ions. The isotope shift of
the D\,-\,P and
D\,-\,P transitions and the hyperfine structure
constant of the S and D states in Ra
were measured. These values provide a benchmark for the required atomic theory.
A lower limit of ms for the lifetime of the metastable
D state was measured by optical shelving.Comment: 4.2 pages, 6 figures, 2 tables
High accuracy theoretical investigations of CaF, SrF, and BaF and implications for laser-cooling
The NL-eEDM collaboration is building an experimental setup to search for the
permanent electric dipole moment of the electron in a slow beam of cold barium
fluoride molecules [Eur. Phys. J. D, 72, 197 (2018)]. Knowledge of molecular
properties of BaF is thus needed to plan the measurements and in particular to
determine an optimal laser-cooling scheme. Accurate and reliable theoretical
predictions of these properties require incorporation of both high-order
correlation and relativistic effects in the calculations. In this work
theoretical investigations of the ground and the lowest excited states of BaF
and its lighter homologues, CaF and SrF, are carried out in the framework of
the relativistic Fock-space coupled cluster (FSCC) and multireference
configuration interaction (MRCI) methods. Using the calculated molecular
properties, we determine the Franck-Condon factors (FCFs) for the transition, which was successfully used for
cooling CaF and SrF and is now considered for BaF. For all three species, the
FCFs are found to be highly diagonal. Calculations are also performed for the
transition recently
exploited for laser-cooling of CaF; it is shown that this transition is not
suitable for laser-cooling of BaF, due to the non-diagonal nature of the FCFs
in this system. Special attention is given to the properties of the
state, which in the case of BaF causes a leak channel, in contrast
to CaF and SrF species where this state is energetically above the excited
states used in laser-cooling. We also present the dipole moments of the ground
and the excited states of the three molecules and the transition dipole moments
(TDMs) between the different states.Comment: Minor changes; The following article has been submitted to the
Journal of Chemical Physics. After it is published, it will be found at
https://publishing.aip.org/resources/librarians/products/journals
Использование терминообразующего потенциала классических языков современными языками (на примере экономической терминологии современного французского языка)
It is imperative to fascinate young children at an early stage in their education for the analytical sciences. The exposure of the public to mass spectrometry presently increases rapidly through the common media. Outreach activities can take advantage of this exposure and employ mass spectrometry as an exquisite example of an analytical science in which children can be fascinated. The presented teaching modules introduce children to mass spectrometry and give them the opportunity to experience a modern research laboratory. The modules are highly adaptable and can be applied to young children from the age of 6 to 14 y. In an interactive tour, the students explore three major scientific concepts related to mass spectrometry; the building blocks of matter, charged particle manipulation by electrostatic fields, and analyte identification by mass analysis. Also, the students carry out a mass spectrometry experiment and learn to interpret the resulting mass spectra. The multistage, inquiry-based tour contains flexible methods, which teach the students current-day research techniques and possible applications to real research topics. Besides the scientific concepts, laboratory safety and hygiene are stressed and the students are enthused for the analytical sciences by participating in “hands-on” work. The presented modules have repeatedly been successfully employed during laboratory open days. They are also found to be extremely suitable for (early) high school science classes during laboratory visit-focused field trips
- …
