3,649 research outputs found

    Plastic Deformation in Laser-Induced Shock Compression of Monocrystalline Copper

    Get PDF
    Copper monocrystals were subjected to shock compression at pressures of 10–60 GPa by a short (3 ns initial) duration laser pulse. Transmission electron microscopy revealed features consistent with previous observations of shock-compressed copper, albeit at pulse durations in the µs regime. The results suggest that the defect structure is generated at the shock front. A mechanism for dislocation generation is presented, providing a realistic prediction of dislocation density as a function of pressure. The threshold stress for deformation twinning in shock compression is calculated from the constitutive equations for slip, twinning, and the Swegle-Grady relationship

    Experimental study of three-nucleon dynamics in proton-deuteron breakup reaction

    Get PDF
    Proton–deuteron breakup reaction can serve as a tool to test stateof- the-art descriptions of nuclear interactions. At intermediate energies, below the threshold for pion production, comparison of the data with exact theoretical calculations is possible and subtle effects of the dynamics beyond the pairwise nucleon–nucleon interaction, namely the three-nucleon force (3NF), are significant. Beside 3NF, Coulomb interaction or relativistic effects are also important to precisely describe the differential cross section of the breakup reaction. The data analysis and preliminary results of the measurement of proton-induced deuteron breakup at the Cyclotron Center Bronowice, Institute of Nuclear Physics, Polish Academy of Sciences in Kraków are presented

    Deuteron-deuteron collision at 160 MeV

    Get PDF
    The experiment was carried out using BINA detector at KVI in Groningen. For the first time an extensive data analysis of the data collected in back part of the detector is presented, where a clusterization method is utilized for angular and energy information. We also present differential cross-sections for the (dd\rightarrowdpn) breakup reaction within \textit{dp} quasi-free scattering limit and their comparison with first calculations based on Single Scattering Approximation (SSA) approach.Comment: 6 pages, 4 figures, presented at Jagiellonian Symposium 2015 in Krakow, PhD wor

    Investigation of two-solvent grinding-assisted liquid phase exfoliation of layered MoS2

    Get PDF
    Grinding-assisted sonication exfoliation of stratified materials such as MoS2 is a widely used method for the preparation of their single- and few-layer thick flakes. This work introduces a two-solvent step approach utilizing a separate solvent during the grinding phase, while implementing ethanol during exfoliation. It is found that the grinding solvent played a critical role, determining exfoliation yield, flake dimensions, and morphology, highlighting the importance of such parameters in the process. Furthermore, it is found that the commonly used N-methyl-2-pyrrolidone (NMP) leads to persistent residues on the exfoliated flakes, which may alter the properties of the flakes and interfere with the development of electronic devices and other applications. A solvent residue free exfoliation method is presented herein, which may be advantageous for future studies

    Hemodialysis Disparities in African Americans: The Deeply Integrated Concept of Race in the Social Fabric of Our Society.

    Get PDF
    End-stage renal disease (ESRD) is one of the starkest examples of racial/ethnic disparities in health. Racial/ethnic minorities are 1.5 to nearly 4 times more likely than their non-Hispanic White counterparts to require renal replacement therapy (RRT), with African Americans suffering from the highest rates of ESRD. Despite improvements over the last 25 years, substantial racial differences are persistent in dialysis quality measures such as RRT modality options, dialysis adequacy, anemia, mineral and bone disease, vascular access, and pre-ESRD care. This report will outline the current status of racial disparities in key ESRD quality measures and explore the impact of race. While the term race represents a social construct, its association with health is more complex. Multiple individual and community level social determinants of health are defined by the social positioning of race in the U.S., while biologic differences may reflect distinct epigenetic changes and linkages to ancestral geographic origins. Together, these factors conspire to influence dialysis outcomes among African Americans with ESRD

    Direct Observation of Martensitic Phase-Transformation Dynamics in Iron by 4D Single-Pulse Electron Microscopy

    Get PDF
    The in situ martensitic phase transformation of iron, a complex solid-state transition involving collective atomic displacement and interface movement, is studied in real time by means of four-dimensional (4D) electron microscopy. The iron nanofilm specimen is heated at a maximum rate of ∼10^(11) K/s by a single heating pulse, and the evolution of the phase transformation from body-centered cubic to face-centered cubic crystal structure is followed by means of single-pulse, selected-area diffraction and real-space imaging. Two distinct components are revealed in the evolution of the crystal structure. The first, on the nanosecond time scale, is a direct martensitic transformation, which proceeds in regions heated into the temperature range of stability of the fcc phase, 1185−1667 K. The second, on the microsecond time scale, represents an indirect process for the hottest central zone of laser heating, where the temperature is initially above 1667 K and cooling is the rate-determining step. The mechanism of the direct transformation involves two steps, that of (barrier-crossing) nucleation on the reported nanosecond time scale, followed by a rapid grain growth typically in ∼100 ps for 10 nm crystallites

    Exfoliation solvent dependent plasmon resonances in two-dimensional sub-stoichiometric molybdenum oxide nanoflakes

    Get PDF
    Few-layer two-dimensional (2D) molybdenum oxide nanoflakes are exfoliated using a grinding assisted liquid phase sonication exfoliation method. The sonication process is carried out in five different mixtures of water with both aprotic and protic solvents. We found that surface energy and solubility of mixtures play important roles in changing the thickness, lateral dimension, and synthetic yield of the nanoflakes. We demonstrate an increase in proton intercalation in 2D nanoflakes upon simulated solar light exposure. This results in substoichiometric flakes and a subsequent enhancement in free electron concentrations, producing plasmon resonances. Two plasmon resonance peaks associated with the thickness and the lateral dimension axes are observable in the samples, in which the plasmonic peak positions could be tuned by the choice of the solvent in exfoliating 2D molybdenum oxide. The extinction coefficients of the plasmonic absorption bands of 2D molybdenum oxide nanoflakes in all samples are found to be high (Îμ > 109 L mol-1 cm-1). It is expected that the tunable plasmon resonances of 2D molybdenum oxide nanoflakes presented in this work can be used in future electronic, optical, and sensing devices

    Polyaniline nanofiber based surface acoustic wave gas sensors – effect of nanofiber diameter on H2 response

    Full text link
    Kourosh and Kaner, Richard B. 2007, Polyaniline nanofiber based surface acoustic wave gas sensors – effect of nanofiber diameter on H2 response, IEEE sensors journal, vol. 7, no. 2, pp. 213-218. Available from Deakin Research Online
    corecore