856 research outputs found
Robust long-distance entanglement and a loophole-free Bell test with ions and photons
Two trapped ions that are kilometers apart can be entangled by the joint
detection of two photons, each coming from one of the ions, in a basis of
entangled states. Such a detection is possible with linear optical elements.
The use of two-photon interference allows entanglement distribution without
interferometric sensitivity to the path length of the photons. The present
method of creating entangled ions also opens up the possibility of a
loophole-free test of Bell's inequalities.Comment: published versio
Entangled states of trapped ions allow measuring the magnetic field gradient of a single atomic spin
Using trapped ions in an entangled state we propose detecting a magnetic
dipole of a single atom at distance of a few m. This requires a
measurement of the magnetic field gradient at a level of about 10
Tesla/m. We discuss applications e.g. in determining a wide variation of
ionic magnetic moments, for investigating the magnetic substructure of ions
with a level structure not accessible for optical cooling and detection,and for
studying exotic or rare ions, and molecular ions. The scheme may also be used
for measureing spin imbalances of neutral atoms or atomic ensembles trapped by
optical dipole forces. As the proposed method relies on techniques well
established in ion trap quantum information processing it is within reach of
current technology.Comment: 4 pages, 2 fi
He 2-104: A link between symbiotic stars and planetary nebulae
Ultraviolet, optical and infrared observations of He 2-104 are presented, and estimates for some of the physical properties of the nebular shell are made. It is argued that He 2-104 is in transition between the D-type symbiotic star and bipolar planetary nebula phases and, as such, represents a link between subclasses of these two types of objects. The model includes a binary system with a Mira variable and a hot, evolved star. Previous mass loss has resulted in the formation of a disk of gas and dust around the whole system, while the hot star has an accretion disk which produces the observed highly ionized emission line spectrum. Emission lines from cooler, lower density gas is also observed to come from the nebula. In addition, matter is flowing out of the system in a direction perpendicular to the disk with a high velocity and is impacting upon the previously-ejected red giant wind and/or the ambient interstellar medium
Nature of the Darwin term and contribution to the Lamb shift for an arbitrary spin of the nucleus
The contact Darwin term is demonstrated to be of the same origin as the
spin-orbit interaction. The correction to the Lamb shift,
generated by the Darwin term, is found for an arbitrary nonvanishing spin of
the nucleus, both half-integer and integer. There is also a contribution of the
same nature to the nuclear quadrupole moment.Comment: 9 pages, latex, no figure
Precise Experimental Investigation of Eigenmodes in a Planar Ion Crystal
The accurate characterization of eigenmodes and eigenfrequencies of
two-dimensional ion crystals provides the foundation for the use of such
structures for quantum simulation purposes. We present a combined experimental
and theoretical study of two-dimensional ion crystals. We demonstrate that
standard pseudopotential theory accurately predicts the positions of the ions
and the location of structural transitions between different crystal
configurations. However, pseudopotential theory is insufficient to determine
eigenfrequencies of the two-dimensional ion crystals accurately but shows
significant deviations from the experimental data obtained from resolved
sideband spectroscopy. Agreement at the level of 2.5 x 10^(-3) is found with
the full time-dependent Coulomb theory using the Floquet-Lyapunov approach and
the effect is understood from the dynamics of two-dimensional ion crystals in
the Paul trap. The results represent initial steps towards an exploitation of
these structures for quantum simulation schemes.Comment: 5 pages, 4 figures, supplemental material (mathematica and matlab
files) available upon reques
Experiments towards quantum information with trapped Calcium ions
Ground state cooling and coherent manipulation of ions in an rf-(Paul) trap
is the prerequisite for quantum information experiments with trapped ions. With
resolved sideband cooling on the optical S1/2 - D5/2 quadrupole transition we
have cooled one and two 40Ca+ ions to the ground state of vibration with up to
99.9% probability. With a novel cooling scheme utilizing electromagnetically
induced transparency on the S1/2 - P1/2 manifold we have achieved simultaneous
ground state cooling of two motional sidebands 1.7 MHz apart. Starting from the
motional ground state we have demonstrated coherent quantum state manipulation
on the S1/2 - D5/2 quadrupole transition at 729 nm. Up to 30 Rabi oscillations
within 1.4 ms have been observed in the motional ground state and in the n=1
Fock state. In the linear quadrupole rf-trap with 700 kHz trap frequency along
the symmetry axis (2 MHz in radial direction) the minimum ion spacing is more
than 5 micron for up to 4 ions. We are able to cool two ions to the ground
state in the trap and individually address the ions with laser pulses through a
special optical addressing channel.Comment: Proceedings of the ICAP 2000, Firenz
Observation of the Kibble-Zurek scaling law for defect formation in ion crystals
Traversal of a symmetry-breaking phase transition at a finite rate can lead
to causallyseparated regions with incompatible symmetries and the formation of
defects at their boundaries. The defect formation follows universal scaling
laws prescribed by the Kibble-Zurek mechanism (KZM) important to the study of
phase transitions in fields as diverse as quantum and statistical mechanics,
condensed matter physics and cosmology. Here, we observe the KZM in a crystal
of cold trapped ions, which is conducive to the precise control of structural
phases and the detection of defects. The experiment confirms a scaling law with
an exponent of 2.68 +/- 0.06, as predicted from the KZM in the finite
inhomogeneous case. Such precision makes it feasible to use ion crystals for
quantitative tests of classical and quantum statistical mechanics
- …
