4,891 research outputs found
Mechanochemical synthesis of a new triptycene-based imine-linked covalent organic polymer for degradation of organic dye
In the present work, a novel triptycene-based imine-linked covalent organic polymer (TP-COP) was designed and synthesized via room-temperature, solvent-free mechanochemical grinding. The as-synthesized TP-COP material was fully characterized by Fourier transform infrared spectroscopy, solid-state NMR, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller method, thermogravimetric analysis, diffuse reflectance spectroscopy (DRS), and electron paramagnetic resonance (EPR). The HRTEM image of TP-COP clearly indicates the presence of graphene-like layered morphology (exfoliated layers). The DRS study reveals that TP-COP exhibited a low optical band gap value of 2.49 eV, implying its semiconducting nature. Further, the EPR study confirmed the semiconducting behavior of TP-COP through the generation of free radicals. These findings suggest that TP-COP could be used as an efficient photocatayst for the degradation of organic dye (RhB) under solar irradiation. Moreover, TP-COP showed excellent reusability in degrading dye (RhB) without obvious performance decay
Jamming at Zero Temperature and Zero Applied Stress: the Epitome of Disorder
We have studied how 2- and 3- dimensional systems made up of particles
interacting with finite range, repulsive potentials jam (i.e., develop a yield
stress in a disordered state) at zero temperature and applied stress. For each
configuration, there is a unique jamming threshold, , at which
particles can no longer avoid each other and the bulk and shear moduli
simultaneously become non-zero. The distribution of values becomes
narrower as the system size increases, so that essentially all configurations
jam at the same in the thermodynamic limit. This packing fraction
corresponds to the previously measured value for random close-packing. In fact,
our results provide a well-defined meaning for "random close-packing" in terms
of the fraction of all phase space with inherent structures that jam. The
jamming threshold, Point J, occurring at zero temperature and applied stress
and at the random close-packing density, has properties reminiscent of an
ordinary critical point. As Point J is approached from higher packing
fractions, power-law scaling is found for many quantities. Moreover, near Point
J, certain quantities no longer self-average, suggesting the existence of a
length scale that diverges at J. However, Point J also differs from an ordinary
critical point: the scaling exponents do not depend on dimension but do depend
on the interparticle potential. Finally, as Point J is approached from high
packing fractions, the density of vibrational states develops a large excess of
low-frequency modes. All of these results suggest that Point J may control
behavior in its vicinity-perhaps even at the glass transition.Comment: 21 pages, 20 figure
Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV
The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8 TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
Speckle Tracking Echocardiography for the Assessment of the Athlete's Heart: Is It Ready for Daily Practice?
PURPOSE OF REVIEW: To describe the use of speckle tracking echocardiography (STE) in the biventricular assessment of athletes' heart (AH). Can STE aid differential diagnosis during pre-participation cardiac screening (PCS) of athletes? RECENT FINDINGS: Data from recent patient, population and athlete studies suggest potential discriminatory value of STE, alongside standard echocardiographic measurements, in the early detection of clinically relevant systolic dysfunction. STE can also contribute to subsequent prognosis and risk stratification. Despite some heterogeneity in STE data in athletes, left ventricular global longitudinal strain (GLS) and right ventricular longitudinal strain (RV ɛ) indices can add to differential diagnostic protocols in PCS. STE should be used in addition to standard echocardiographic tools and be conducted by an experienced operator with significant knowledge of the AH. Other indices, including left ventricular circumferential strain and twist, may provide insight, but further research in clinical and athletic populations is warranted. This review also raises the potential role for STE measures performed during exercise as well as in serial follow-up as a method to improve diagnostic yield
Population‐based cohort study of outcomes following cholecystectomy for benign gallbladder diseases
Background The aim was to describe the management of benign gallbladder disease and identify characteristics associated with all‐cause 30‐day readmissions and complications in a prospective population‐based cohort. Methods Data were collected on consecutive patients undergoing cholecystectomy in acute UK and Irish hospitals between 1 March and 1 May 2014. Potential explanatory variables influencing all‐cause 30‐day readmissions and complications were analysed by means of multilevel, multivariable logistic regression modelling using a two‐level hierarchical structure with patients (level 1) nested within hospitals (level 2). Results Data were collected on 8909 patients undergoing cholecystectomy from 167 hospitals. Some 1451 cholecystectomies (16·3 per cent) were performed as an emergency, 4165 (46·8 per cent) as elective operations, and 3293 patients (37·0 per cent) had had at least one previous emergency admission, but had surgery on a delayed basis. The readmission and complication rates at 30 days were 7·1 per cent (633 of 8909) and 10·8 per cent (962 of 8909) respectively. Both readmissions and complications were independently associated with increasing ASA fitness grade, duration of surgery, and increasing numbers of emergency admissions with gallbladder disease before cholecystectomy. No identifiable hospital characteristics were linked to readmissions and complications. Conclusion Readmissions and complications following cholecystectomy are common and associated with patient and disease characteristics
- …
