1,765 research outputs found
Molecular profiling of resident and infiltrating mononuclear phagocytes during rapid adult retinal degeneration using single-cell RNA sequencing.
Neuroinflammation commonly accompanies neurodegeneration, but the specific roles of resident and infiltrating immune cells during degeneration remains controversial. Much of the difficulty in assessing myeloid cell-specific functions during disease progression arises from the inability to clearly distinguish between activated microglia and bone marrow-derived monocytes and macrophages in various stages of differentiation and activation within the central nervous system. Using an inducible model of photoreceptor cell death, we investigated the prevalence of infiltrating monocytes and macrophage subpopulations after the initiation of degeneration in the mouse retina. In vivo retinal imaging revealed infiltration of CCR2+ leukocytes across retinal vessels and into the parenchyma within 48 hours of photoreceptor degeneration. Immunohistochemistry and flow cytometry confirmed and characterized these leukocytes as CD11b+CD45+ cells. Single-cell mRNA sequencing of the entire CD11b+CD45+ population revealed the presence of resting microglia, activated microglia, monocytes, and macrophages as well as 12 distinct subpopulations within these four major cell classes. Our results demonstrate a previously immeasurable degree of molecular heterogeneity in the innate immune response to cell-autonomous degeneration within the central nervous system and highlight the necessity of unbiased high-throughput and high-dimensional molecular techniques like scRNAseq to understand the complex and changing landscape of immune responders during disease progression
Multilocation Corn Stover Harvest Effects on Crop Yields and Nutrient Removal
Corn (Zea mays L.) stover was identified as an important feedstock for cellulosic bioenergy production because of the extensive area upon which the crop is already grown. This report summarizes 239 site-years of field research examining effects of zero, moderate, and high stover removal rates at 36 sites in seven different states. Grain and stover yields from all sites as well as N, P, and K removal from 28 sites are summarized for nine longitude and six latitude bands, two tillage practices (conventional vs no tillage), two stover-harvest methods (machine vs calculated), and two crop rotations {continuous corn (maize) vs corn/soybean [Glycine max (L.) Merr.]}. Mean grain yields ranged from 5.0 to 12.0 Mg ha−1 (80 to 192 bu ac−1). Harvesting an average of 3.9 or 7.2 Mg ha−1(1.7 or 3.2 tons ac−1) of the corn stover resulted in a slight increase in grain yield at 57 and 51 % of the sites, respectively. Average no-till grain yields were significantly lower than with conventional tillage when stover was not harvested, but not when it was collected. Plant samples collected between physiological maturity and combine harvest showed that compared to not harvesting stover, N, P, and K removal was increased by 24, 2.7, and 31 kg ha−1, respectively, with moderate (3.9 Mg ha−1) harvest and by 47, 5.5, and 62 kg ha−1, respectively, with high (7.2 Mg ha−1) removal. This data will be useful for verifying simulation models and available corn stover feedstock projections, but is too variable for planning site-specific stover harvest
The running of the electromagnetic coupling alpha in small-angle Bhabha scattering
A method to determine the running of alpha from a measurement of small-angle
Bhabha scattering is proposed and worked out. The method is suited to high
statistics experiments at e+e- colliders, which are equipped with luminometers
in the appropriate angular region. A new simulation code predicting small-angle
Bhabha scattering is also presentedComment: 15 pages, 3 Postscript figure
B decay and the Upsilon mass
Theoretical predictions for inclusive semileptonic B decay rates are
rewritten in terms of the Upsilon(1S) meson mass instead of the b quark mass,
using a modified perturbation expansion. This method gives theoretically
consistent and phenomenologically useful results. Perturbation theory is well
behaved, and the largest theoretical error in the predictions coming from the
uncertainty in the quark mass is eliminated. The results are applied to the
determination of , , and .Comment: 8 pages revte
Scintillator counters with WLS fiber/MPPC readout for the side muon range detector (SMRD)of the T2K experiment
The T2K neutrino experiment at J-PARC uses a set of near detectors to measure
the properties of an unoscillated neutrino beam and neutrino interaction
cross-sections. One of the sub-detectors of the near-detector complex, the side
muon range detector (SMRD), is described in the paper. The detector is designed
to help measure the neutrino energy spectrum, to identify background and to
calibrate the other detectors. The active elements of the SMRD consist of 0.7
cm thick extruded scintillator slabs inserted into air gaps of the UA1 magnet
yokes. The readout of each scintillator slab is provided through a single WLS
fiber embedded into a serpentine shaped groove. Two Hamamatsu multi-pixel
avalanche photodiodes (MPPC's) are coupled to both ends of the WLS fiber. This
design allows us to achieve a high MIP detection efficiency of greater than
99%. A light yield of 25-50 p.e./MIP, a time resolution of about 1 ns and a
spatial resolution along the slab better than 10 cm were obtained for the SMRD
counters.Comment: 7 pages, 4 figures; talk at TIPP09, March 12-17, Tsukuba, Japan; to
be published in the conference proceeding
Impact of shortened crop rotation of oilseed rape on soil and rhizosphere microbial diversity in relation to yield decline
Oilseed rape (OSR) grown in monoculture shows a decline in yield relative to virgin OSR of up to 25%, but the mechanisms responsible are unknown. A long term field experiment of OSR grown in a range of rotations with wheat was used to determine whether shifts in fungal and bacterial populations of the rhizosphere and bulk soil were associated with the development of OSR yield decline. The communities of fungi and bacteria in the rhizosphere and bulk soil from the field experiment were profiled using terminal restriction fragment length polymorphism (TRFLP) and sequencing of cloned internal transcribed spacer regions and 16S rRNA genes, respectively. OSR cropping frequency had no effect on rhizosphere bacterial communities. However, the rhizosphere fungal communities from continuously grown OSR were significantly different to those from other rotations. This was due primarily to an increase in abundance of two fungi which showed 100% and 95% DNA identity to the plant pathogens Olpidium brassicae and Pyrenochaeta lycopersici, respectively. Real-time PCR confirmed that there was significantly more of these fungi in the continuously grown OSR than the other rotations. These two fungi were isolated from the field and used to inoculate OSR and Brassica oleracea grown under controlled conditions in a glasshouse to determine their effect on yield. At high doses, Olpidium brassicae reduced top growth and root biomass in seedlings and reduced branching and subsequent pod and seed production. Pyrenochaeta sp. formed lesions on the roots of seedlings, and at high doses delayed flowering and had a negative impact on seed quantity and quality
Low-Energy Signals from Kinetic Mixing with a Warped Abelian Hidden Sector
We investigate the detailed phenomenology of a light Abelian hidden sector in
the Randall-Sundrum framework. Relative to other works with light hidden
sectors, the main new feature is a tower of hidden Kaluza-Klein vectors that
kinetically mix with the Standard Model photon and Z. We investigate the decay
properties of the hidden sector fields in some detail, and develop an approach
for calculating processes initiated on the ultraviolet brane of a warped space
with large injection momentum relative to the infrared scale. Using these
results, we determine the detailed bounds on the light warped hidden sector
from precision electroweak measurements and low-energy experiments. We find
viable regions of parameter space that lead to significant production rates for
several of the hidden Kaluza-Klein vectors in meson factories and fixed-target
experiments. This offers the possibility of exploring the structure of an extra
spacetime dimension with lower-energy probes.Comment: (1+32) Pages, 13 Figures. v2: JHEP version (minor modifications,
results unchanged
Improving statistical inference on pathogen densities estimated by quantitative molecular methods: malaria gametocytaemia as a case study
BACKGROUND: Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. RESULTS: The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. CONCLUSIONS: Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens
- …
