7 research outputs found

    The relationship of 4-vinylcyclohexene diepoxide toxicity with cell death, oxidative stress, and gap junctions in female rat ovaries

    No full text
    Purpose It was aimed to investigate the damage caused by VCD toxicity in the ovary, which women working in the industrial field are frequently exposed to, and to show the relationship between gap junction protein, oxidative stress, and apoptosis, which is thought to be effective in the emergence of this damage. Methods Rats were divided into three groups as control, sham, and VCD. Histological stainings were performed for histopathological evaluations in ovary. Serum AMH level was measured with the ELISA. Then, iNOS, caspase 3, connexin 43 protein, and mRNA expression levels were analyzed by immunohistochemistry and RT-qPCR methods. Results As a result of the analyses, different amounts of degenerations such as hemorrhage, vacuolization, and fibrosis were observed in the ovary. VCD group AMH level decreased compared to control. In VCD group, iNOS and caspase 3 expressions increased, while connexin 43 expression decreased. Conclusions It was shown that VCD caused damage to all ovarian tissue. Also, it was revealed for the first time that VCD triggered apoptosis by increasing oxidative stress in the ovary and suppressed connexin 43 which was also effective in the survival of granulosa cells. The devastating effect of exposure to occupational chemicals such as VCD on fertility was demonstrated in this study

    Thermal conductivity enhancement of nanofluid by adding multiwalled carbon nanotubes: Characterization and numerical modeling patterns

    Get PDF
    © 2020 John Wiley & Sons, Ltd. Nanofluid is divided in two major section, mono nanofluid (MN) and hybrid nanofluid (HN). MN is created when a solid nanoparticle disperses in a fluid, whereas HN has more than one solid nanomaterial. In this research, iron (III) oxide (Fe3O4) is MN, and Fe3O4 plus multiwalled carbon nanotube (MWCNT) is HN, whereas both are mixed and dispersed into the water basefluid. Thermal conductivity (TC) of Fe3O4/water and MWCNT/Fe3O4/water was measured after preparation and numerical model performed on the resulted data. After that, field emission scanning electron microscope (FESEM) was studied for microstructural observation of nanoparticles. MN and HN TC were studied at temperature ranges of 25 to 50°C and volume fractions of 0.2% to 1.0%. For MN and HN, thermal conductivity enhancement (TCE) of 32.76% and 33.23% was measured at 50°C temperature—1.0% volume fraction, individually. Different correlations have been calculated for numerical modeling, with R2 = 0.9. Deviation of 0.6007% and 0.6096% was calculated for given correlations for MN and HN individually. Deviation of 0.5862% and 0.6057% was calculated for trained models, for MN and HN individually. Thus, by adding MWCNT to Fe3O4-H2O nanofluid, TC is enhanced 0.47%, and this HN has agreeable heat transfer potential
    corecore