741 research outputs found

    State Sentencing Guidelines: Profiles and Continuum

    Get PDF
    Describes twenty-one state sentencing commissions; highlights key attributes of each state's sentencing guidelines and the composition of each commission; and compares guideline systems along a continuum from "more voluntary" to "more mandatory.

    Inclusive charged hadron elliptic flow in Au + Au collisions at sNN\sqrt{s_{NN}} = 7.7 - 39 GeV

    Get PDF
    A systematic study is presented for centrality, transverse momentum (pTp_T) and pseudorapidity (η\eta) dependence of the inclusive charged hadron elliptic flow (v2v_2) at midrapidity(η<1.0|\eta| < 1.0) in Au+Au collisions at sNN\sqrt{s_{NN}} = 7.7, 11.5, 19.6, 27 and 39 GeV. The results obtained with different methods, including correlations with the event plane reconstructed in a region separated by a large pseudorapidity gap and 4-particle cumulants (v24v_2{4}), are presented in order to investigate non-flow correlations and v2v_2 fluctuations. We observe that the difference between v22v_2{2} and v24v_2{4} is smaller at the lower collision energies. Values of v2v_2, scaled by the initial coordinate space eccentricity, v2/εv_{2}/\varepsilon, as a function of pTp_T are larger in more central collisions, suggesting stronger collective flow develops in more central collisions, similar to the results at higher collision energies. These results are compared to measurements at higher energies at the Relativistic Heavy Ion Collider (sNN\sqrt{s_{NN}} = 62.4 and 200 GeV) and at the Large Hadron Collider (Pb + Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV). The v2(pT)v_2(p_T) values for fixed pTp_T rise with increasing collision energy within the pTp_T range studied (<2GeV/c< 2 {\rm GeV}/c). A comparison to viscous hydrodynamic simulations is made to potentially help understand the energy dependence of v2(pT)v_{2}(p_{T}). We also compare the v2v_2 results to UrQMD and AMPT transport model calculations, and physics implications on the dominance of partonic versus hadronic phases in the system created at Beam Energy Scan (BES) energies are discussed.Comment: 20 pages, 12 figures. Version accepted by PR

    Studies of di-jet survival and surface emission bias in Au+Au collisions via angular correlations with respect to back-to-back leading hadrons

    Get PDF
    We report first results from an analysis based on a new multi-hadron correlation technique, exploring jet-medium interactions and di-jet surface emission bias at RHIC. Pairs of back-to-back high transverse momentum hadrons are used for triggers to study associated hadron distributions. In contrast with two- and three-particle correlations with a single trigger with similar kinematic selections, the associated hadron distribution of both trigger sides reveals no modification in either relative pseudo-rapidity or relative azimuthal angle from d+Au to central Au+Au collisions. We determine associated hadron yields and spectra as well as production rates for such correlated back-to-back triggers to gain additional insights on medium properties.Comment: By the STAR Collaboration. 6 pages, 2 figure

    Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions

    Get PDF
    Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in non-central collisions. To study this effect, we investigate a three particle mixed harmonics azimuthal correlator which is a \P-even observable, but directly sensitive to the charge separation effect. We report measurements of this observable using the STAR detector in Au+Au and Cu+Cu collisions at sNN\sqrt{s_{NN}}=200 and 62~GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators, and discuss in detail possible contributions from other effects that are not related to parity violation.Comment: 17 pages, 14 figures, as accepted for publication in Physical Review C

    J/ψ\rm{J}/\psi production at low transverse momentum in p+p and d+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Full text link
    We report on the measurement of J/ψ\rm{J}/\psi production in the dielectron channel at mid-rapidity (|y|<1) in p+p and d+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV from the STAR experiment at the Relativistic Heavy Ion Collider. The transverse momentum pTp_{T} spectra in p+p for pTp_{T} < 4 GeV/c and d+Au collisions for pTp_{T} < 3 GeV/c are presented. These measurements extend the STAR coverage for J/ψ\rm{J}/\psi production in p+p collisions to low pTp_{T}. The from the measured J/ψ\rm{J}/\psi invariant cross section in p+p and d+Au collisions are evaluated and compared to similar measurements at other collision energies. The nuclear modification factor for J/ψ\rm{J}/\psi is extracted as a function of pTp_{T} and collision centrality in d+Au and compared to model calculations using the modified nuclear Parton Distribution Function and a final-state J/ψ\rm{J}/\psi nuclear absorption cross section

    Identified high-pTp_{T} spectra in Cu+Cu collisions at sNN\sqrt{s_{NN}}=200 GeV

    Get PDF
    We report new results on identified (anti)proton and charged pion spectra at large transverse momenta (3<pTp_{T}<10 GeV/c) from Cu+Cu collisions at sNN\sqrt{s_{NN}}=200 GeV using the STAR detector at the Relativistic Heavy Ion Collider (RHIC). This study explores the system size dependence of two novel features observed at RHIC with heavy ions: the hadron suppression at high-pTp_{T} and the anomalous baryon to meson enhancement at intermediate transverse momenta. Both phenomena could be attributed to the creation of a new form of QCD matter. The results presented here bridge the system size gap between the available pp and Au+Au data, and allow the detailed exploration for the on-set of the novel features. Comparative analysis of all available 200 GeV data indicates that the system size is a major factor determining both the magnitude of the hadron spectra suppression at large transverse momenta and the relative baryon to meson enhancement.Comment: Submitted to Phys. Rev. C, 9 pages, 5 figure
    corecore