14,289 research outputs found

    TWINTN4: A program for transonic four-wall interference assessment in two-dimensional wind tunnels

    Get PDF
    A method for assessing the wall interference in transonic two-dimensional wind tunnel tests including the effects of the tunnel sidewall boundary layer was developed and implemented in a computer program named TWINTN4. The method involves three successive solutions of the transonic small disturbance potential equation to define the wind tunnel flow, the equivalent free air flow around the model, and the perturbation attributable to the model. Required input includes pressure distributions on the model and along the top and bottom tunnel walls which are used as boundary conditions for the wind tunnel flow. The wall-induced perturbation field is determined as the difference between the perturbation in the tunnel flow solution and the perturbation attributable to the model. The methodology used in the program is described and detailed descriptions of the computer program input and output are presented. Input and output for a sample case are given

    User's guide to STIPPAN: A panel method program for slotted tunnel interference prediction

    Get PDF
    Guidelines are presented for use of the computer program STIPPAN to simulate the subsonic flow in a slotted wind tunnel test section with a known model disturbance. Input data requirements are defined in detail and other aspects of the program usage are discussed in more general terms. The program is written for use in a CDC CYBER 200 class vector processing system

    A vector-continuous loading concept for aerodynamic panel methods

    Get PDF
    An approach to the reduction of discretization errors in aerodynamic panel methods is presented. The approach is based on preventing the occurence of induced velocity singularities at panel slope discontinuities by maintaining continuity of the velocity jump vector across the panels. The approach was implemented in a two-dimensional incompressible panel method formulation and evaluated by application to several external and internal flow problems. The method is shown to exhibit a second order accuracy trend and to produce smaller errors with velocity component boundary conditions imposed on the real flow than with equipotential boundary conditions imposed on the imaginary flow behind the panels. For flows around airfoil sections with either sharp or blunt trailing edges, the method gives excellent agreement with results from a well developed finite difference method. The method is well behaved and is insensitive to irregularities in panel size distribution

    Wall-interference assessment in three-dimensional slotted-wall wind tunnels

    Get PDF
    The development of the slotted tunnel simulator code and lessons learned from its use are summarized. The high order panel method was selected as the basic procedure for aerodynamic computations. The panel singularities are supplemented by line sources to represent discrete wall slots

    Graphics calculators in the mathematics curriculum: Integration or differentiation?

    Get PDF
    Graphics calculators are examples of powerful technologies that we want our students to learn to use well. However if we use them in our courses only for learning, students will not regard them with due importance because they are not integrated into the assessment. On the other hand, if graphics calculators are integrated into both learning and assessment there are risks associated with students becoming calculator dependent, issues of equity arise associated with calculator access and there may be problems with setting an appropriate examination. We discuss this dilemma in the light of our experiences and the reactions of our students over the last two years

    Symbolic manipulation on a TI-92: New threat or hidden treasures?

    Get PDF
    The availability of hand held devices that can undertake symbolic manipulation is a recent phenomenon, potentially of great significance for both the algebra and calculus curriculum in the secondary and lower undergraduate years. The significance to date of symbolic manipulation for mathematics is described, and parallels drawn with the significance of arithmetic skills for the primary school. It is suggested that, while symbolic manipulation is central to mathematics, many students develop only a restricted competence with the associated mathematical ideas. The Texas Instruments TI-92 is used to suggest some potential beneficial uses of technology that involves symbolic manipulation

    Teaching and learning trigonometry with technology

    Get PDF
    Modern school classrooms have access to a range of potential technologies, ranging from calculators to computers to the Internet. This paper explores some of the potential for such technologies to affect the curriculum and teaching of trigonometry in the secondary school. We identify some of the ways in which the teaching of trigonometry might be supported by the availability of various forms of technology. We consider circular measures, graphs of functions, trigonometric identities, equations and statistical modeling and focus on activities that are not possible without the use of technology. Modern technology provides an excellent means of exploring many of the concepts associated with trigonometry, both trigonometric and circular functions. Many of these opportunities for learning were not available before technology development and access within schools we enjoy today. This paper suggests some of the avenues for exploration

    Transonic wind-tunnel wall interference

    Get PDF
    A method for analyzing wall interference is described which avoids the assumption of linear superposition of perturbations in extracting the wall induced velocity field. Measurements of pressure distribution on or near the tunnel walls during the actual wind tunnel test, are imposed as boundary values to be matched. Instead of applying wall interference corrections to the wind tunnel data, some property of the wall is adjusted until a calculated interference free criterion is satisfied for each tunnel data point. The mode of operation for the National Transonic Facility, envisioned as a correctable interference transonic tunnel, combines the capability for accurate assessment of wall interference with a limited capability for wall control
    corecore